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3D/4D printing offers significant flexibility in manufacturing complex structures with a
diverse range of mechanical responses, while also posing critical needs in tackling chal-
lenging inverse design problems. The rapidly developing machine learning (ML) approach
offers new opportunities and has attracted significant interest in the field. In this perspective
paper, we highlight recent advancements in utilizing ML for designing printed structures
with desired mechanical responses. First, we provide an overview of common forward
and inverse problems, relevant types of structures, and design space and responses in
3D/4D printing. Second, we review recent works that have employed a variety of ML
approaches for the inverse design of different mechanical responses, ranging from struc-
tural properties to active shape changes. Finally, we briefly discuss the main challenges,
summarize existing and potential ML approaches, and extend the discussion to broader
design problems in the field of 3D/4D printing. This paper is expected to provide founda-
tional guides and insights into the application of ML for 3D/4D printing design.
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1 Introduction
Three-dimensional (3D) printing, or additive manufacturing,

enables the creation of complex physical objects from digital
models. Multimaterial printing allows for the fabrication of com-
posite structures with materials of different properties and different
active responses [1–3]. Owing to the development of multimaterial
printing and active materials, the emerging 4D printing technology
takes a step further by introducing time as a dimension, allowing
printed objects to change their shape, properties, and/or functional-
ity when exposed to specific environmental stimuli (e.g., light, heat,
moisture, pH, solvent, and electric/magnetic field) [4–8].
There exist many 3D printing techniques. Depending on how the

raw material is deposited, these techniques can be classified into the

following categories: extrusion-based methods such as direct ink
writing (DIW) and fused filament fabrication (FFF), jetting-based
methods, vat-photopolymerization methods such as digital light
processing (DLP), stereolithography (SLA), and two-photon poly-
merization (TPP), powder bed fusion-based methods such as selec-
tive laser sintering (SLS), etc. We refer the readers to recent reviews
[8,9] for detailed descriptions of these techniques.
3D/4D Printing offers significant manufacturing flexibility, espe-

cially in creating complex shapes and structures that exhibit functions
and responses beyond those of printed materials. Here, we refer to
printed materials as those directly coming out of a printer without
specially designed geometry or features; their properties are only
determined by the printing techniques and printer operating parame-
ters. In 3D/4D printing, design plays an important role in exploiting
its advantage to enable intelligent printing and advancing various
engineering applications [10–23]. This entails defining the functional
description of transformable or deployable systems according to
various usage scenarios, on which computational reasoning is
needed to embody knowledge and decisions related to 4D printing.
To achieve the appropriate geometry and structure of shape-changing
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objects, decisions can be made on qualitative recommendation with
the support of domain ontology (which is a component of symbolic
artificial intelligence to formalize knowledge of an expertise domain
with machine-interpretable description), as successfully demon-
strated in the design of multimaterial 4D-printed objects [24,25].
However, addressing design for 3D/4D printing via symbolic

reasoning alone is insufficient; it demands both the forward predic-
tion of the properties, physical fields, load–displacement, and
shape change of printed structures, and the inverse design ofmaterial
distributions, topology, geometry, and stimulus fields (in terms of
amplitude, location, and duration), as illustrated in Fig. 1. Printed
objects can range from digital composites at the pixel (2D) or
voxel (3D) level, to metamaterials or architected materials, and
other active or intelligent material systems. Microstructures can
also be encoded in pixels or voxels to create a hierarchical or multi-
scale material system [26,27]. The forward problem takes design
inputs, such as material properties, material distributions, geometry,
topology, hierarchies, and stimulus fields, and predicts mechanical-
response outputs such as apparent structural properties (e.g.,
modulus, strength, toughness, and homogenized stiffness tensor
for anisotropic hierarchical systems), physical fields (e.g., strain and
stress fields), nonlinear load–displacement response and, particularly,
the shape or function changes of activematerial systems (which can be
seen as a deformation field). The inverse design problem seeks to find
appropriate design inputs for tasks such as extremizingproperty values
and obtaining designated properties or responses.
Motivated by the need to fully utilize the manufacturing flexibil-

ity, significant advancements have been made in developing design
strategies. Topology optimization (TO) [28] represents a large class
of methods that optimize the geometric features within a design
domain to achieve certain objectives. While initiated for maximiz-
ing structural performance and minimizing weight, TO has found
significant applications to a wide range of design problems in 3D/
4D printing [29,30]. Examples include multiscale TO for enhanced
structural performance [31–34] and programmed shape changes
[35]; anisotropic composite TO for enhanced performance [36,37]
and target actuated motions [38]; and TO for programming force-
displacement response [39], shape changes of 4D-printed systems
(such as active composites [40,41], inflatable structures [42], rod-
based structures [43–45], and magnetoactive materials [46]), and
continuous shape morphing paths or motions of soft composites
[47,48]. In addition, TO has been used in the designs of supports
and infills for improved part printability [29]. Despite its great
success, TO generally requires complicated mathematical deriva-
tions and can be time-consuming due to computationally expensive
physical simulations, especially when geometric and material non-
linearities are involved.
Machine learning (ML), particularly deep learning [49], offers an

alternative approach that can handle complex mapping efficiently,

making it an attractive tool for the design of 3D/4D printing. ML
can be broadly categorized into three types: supervised learning
(SL), unsupervised learning (USL), and reinforcement learning (RL).
SL learns the mapping in labeled data, which is often used for classi-
fication and regression tasks, such as property prediction. USL identi-
fies inherent structures in unlabeled data, which may be used for
clustering, dimensionality reduction, and discovering new structures.
RL involves an agent that takes action in an environment to maximize
a reward, which is often used for decision-making and optimization
tasks. The landscape of ML techniques is vast and consistently evolv-
ing. Here, we list some popular methods used in design: support vector
machine (SVM), decision tree (DT), neural network (NN), convolu-
tional neural network (CNN), recurrent neural network (RNN),
graph neural network (GNN), generative adversarial network
(GAN), principal component analysis (PCA), variational autoencoder
(VAE), Gaussian process (GP), Bayesian learning (BL), active learn-
ing (AL), and evolutionary algorithm (EA) among many others [50].
The readers are referred to textbooks [50] for working principles of
these ML methods and to some recent reviews [51–53] for ML appli-
cations in the area of mechanics of materials.
In this perspective article, we review some recent works that

apply ML methods to the design for 3D/4D printing. We primarily
focus on the design of the mechanical properties or active responses
of printed structures. While ML has many other applications in
the entire field of 3D printing [54–58], such as processing parameter
refinements [59,60], in-situ anomaly monitoring for quality control
[61], and printing material design and discovery [62–65], these
applications are not the focus here. The paper is organized as
follows. Section 2 summarizes existing works on ML in 3D/4D
printing designs, based on several categories of material systems
and target properties/responses, and Sec. 3 provides discussions
and perspectives.

2 3D/4D Printing Designs
2.1 Mechanical Properties of Composites. Composites that

possess pixel- or voxel-level material distributions can be naturally
encoded as number arrays, which are suitable for serving as input
data for ML models. Extensive studies have been done on utilizing
ML to predict or optimize various mechanical properties of compos-
ite (or heterogeneous) materials, such as effective modulus,
strength, and toughness.
Cecen et al. [66] employed 3D CNN to predict the effective

modulus of 3D heterogeneous materials. Li et al. [67] utilized
CNN to predict the effectivemodulus of 2Dheterogeneousmaterials.
Regarding strength and toughness, Buehler and coworkers
[26,68,69] havemade significant efforts in exploring theMLcapabil-
ity in composite optimizations. They developed anML classification
model [68] to evaluate 2D composite designs in terms of their
strength or toughness and distinguish them as either “good” or
“bad.” The model, once trained with FE-generated data, can be
used to assess the ranking of unseen designs, thus empowering the
optimization to achieve high strength or toughness. The optimized
designs based on this approach are shown in Fig. 2(a). AnML regres-
sion model [69] was later developed and combined with EA to opti-
mize the composite strength and toughness under shear loading.
In composite designs based on pixels, the design space is often

tremendous. To mitigate this issue, Buehler and coworkers [26]
innovatively incorporated ML with the hierarchical design
concept. This strategy uses specific microstructures containing
numerous pixels as basic design units and then performs the predic-
tion or design in a coarse-grain manner. As shown in Fig. 2(b), they
proposed three elementary design units with different anisotropies.
The ML model was then employed to predict the mechanical prop-
erties of the composite system, which, in turn, enabled fast optimi-
zations. In addition to NN and CNN, the application of other ML
methods such as active learning [74] and reinforcement learning
[75,76] for the bioinspired composite designs has been explored.
Furthermore, minimizing the overall compliance of irregular

Fig. 1 Overview of forward and inverse problems in 3D/4D print-
ing utilizing ML. The design space typically involvesmaterial dis-
tribution, topology, geometry, and stimulus fields. The output
generally includes mechanical properties, load–displacement,
physical fields, and shape change.
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structural topologies (a form of heterogeneous materials) is a
typical inverse problem in TO. A variety of ML models such as
GAN [77] and CNN [78] have been developed for TO tasks.
These works are not elaborated on here, and the readers may
refer to a recent review [79].

2.2 Stress and Strain Fields

2.2.1 Forward Prediction and Material-Distribution Design.
Apart from macroscopic mechanical properties, the physical fields

(e.g., stress and strain fields) are often of interest. One associated
forward problem is the prediction of stress or strain fields in a
given structure. Nie et al. [80] proposed a CNN model that can
predict the stress fields of cantilever structures with moderately arbi-
trary topologies and loads. Buehler and coworkers [70] developed a
conditional GAN-based ML approach, which can predict the stress
and strain fields of composites with pixel-level material distribution,
as shown in Fig. 2(c). The model also demonstrated the applicabil-
ity to different component shapes, boundary conditions, and geo-
metric hierarchies. Later on, they further extended this approach

Fig. 2 Applications of ML in various material systems with different design parameters and mechanical responses.
(a) Optimized material distributions of composites for high toughness (top row) and strength (bottom row).
Reprinted from Ref. [68], Copyright 2018, with permission from Elsevier. (b) Hierarchical design units (left) and opti-
mized designs for high toughness (right). Reproduced (adapted) from Ref. [26] with permission from the Royal
Society of Chemistry. (c) Predictions of stress and strain fields of composites with pixel-level material distributions
using conditional GAN. Reproduced from Ref. [70], Copyright 2021, The Authors, published by AAAS. (d ) Inverse
identification of material distributions based on boundary displacements using physics-informed ML. Reproduced
from [71], Copyright 2022, The Authors, published by AAAS. (e) VAE enabled low-dimensional, highly structured
latent space of microstructures, which allows for the generation of diverse architecture families with gradually
varying geometries and stiffness. Reprinted from Ref. [72], Copyright 2020, with permission from Elsevier. (f )
Forward and inverse ML-enabled two-way structure–property mapping, where the training of inverse NN is super-
vised by the pretrained forward NN. Reproduced from Ref. [73], Copyright 2020, The Authors, published by Springer
Nature.
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for the complete strain and stress tensor predictions and demon-
strated enhanced model generalization by enriching the training
datasets with different hierarchies and constituent ratios [81].
The inverse problem, which is manifested as various specific

tasks and applications in different fields, has attracted significant
interest. In the context of 3D printing, the goal is to design the mate-
rial property distribution to achieve the target physical field under
external loads. Montgomery et al. [27] managed to realize locally
tunable anisotropy by using grayscale DLP printed microstructural
patterned units, where the CNN model was employed for the mac-
roscale design of the property field when target strain fields were
given.

2.2.2 Material Characterization in Experimental Mechanics.
In experimental mechanics [52,53], the inverse problem holds par-
ticular significance for the material characterization or elastography,
i.e., to identify the mechanical property field based on a measured
deformation field. Various ML methods have been developed for
this problem. Although it differs from the design problem in 3D/
4D printing, the underlying objective for both problems is to estab-
lish a mapping from deformation to property, suggesting that ML
methodologies developed for one might be adapted for the other.
Therefore, we briefly discuss the ML strategies used in the material
characterization here.
Physics-informed neural networks (PINN), pioneered by Karnia-

dakis and coworkers [82], have made significant advancements.
PINN has been applied to various systems governed by partial dif-
ferential equations (PDEs), both for forward and for inverse prob-
lems. Specifically, Zhang et al. [83] implemented a PINN to
determine the modulus field of nonhomogeneous hyperelastic mate-
rials subjected to external loads, based on the applied boundary dis-
placement data. Later on, they expanded the approach to materials
with heterogeneous inclusions or defects [71]. Using PINN, they
were able to identify both the geometry (or topology) and elastic
properties of the inclusions (Fig. 2(d )), which was demonstrated
for materials with various constitutive behaviors, possibly with
large deformations or plasticity. Moreover, a similar PINN
approach was recently proposed by Mowlavi et al. [84], who dem-
onstrated the identification of inclusions with unknown numbers,
various properties, and irregular shapes. In addition to the works
above, other PINN methods have been proposed to identify nonho-
mogeneous mechanical properties using full-field experimental data
[85–89]. One of the major advantages of PINN is that it can inte-
grate physical laws and data in the loss function, and thus requires
no or a small amount of data in many cases. Additionally, while
PINN does not outperform conventional methods such as finite
element (FE) simulations for forward problems [90], it demon-
strates superior performance for many inverse problems [53].
In essence, PINN represents an optimization method leveraging

the strong expressivity of deep neural networks. Despite its
strength, this optimization nature implies that a fresh optimization
run is required for each unique deformation field, making individual
tasks time-consuming. SL, although requiring a large amount of
labeled data, can function much faster once the training is complete
and thus has also been employed for inverse material characteriza-
tion tasks. For example, Liu et al. [91] developed an ML model that
combines discrete cosine transform (DCT) and CNN for accurate
modulus field identification. The DCT was used to transform data
into the frequency domain, thereby achieving dimensionality reduc-
tion and noise filtering. The CNN was then utilized to learn the
inverse mapping of frequency data from the strain to the modulus
field. This demonstrates the importance of dimensionality reduction
in SL tasks when the design or property space is huge.

2.3 Mechanical Metamaterials. Mechanical metamaterials,
or architected materials, represent a broad class of engineered struc-
tures whose properties are determined more by their geometric con-
figurations than by the constituent materials. They often involve
intricate microstructural units (or architectures), making them

highly amenable to fabrication via 3D printing. Such microstruc-
tures can yield exotic properties, such as tailorable anisotropy,
unusual stress–strain curves, negative Poisson’s ratios, and
tunable acoustic properties. Therefore, the inverse microstructural
design for desired properties is a significant facet in the 3D/4D
printing design.

2.3.1 Anisotropic Elasticity by Generative Models. In the
design of mechanical metamaterials, an important objective is to
achieve the desired, often anisotropic, stiffness tensor. Here, the
associated forward problem, i.e., predicting the homogenized
elastic stiffness tensor of an architecture (often referred to as
homogenization), is typically more tractable using supervised ML
models. However, the inverse problem presents a significant chal-
lenge as it is ill-posed due to the infinite-dimensional geometric
design space and the one-to-many mapping nature from properties
to structures. To tackle the inverse problem, deep generative models
have been employed to spawn new complex architected designs.
For example, Zhao and coworkers [92] developed a GAN model
that learns microstructural features from the enormous database
they built. This model was then used to generate a myriad of
isotropic-elastic architectures that approach the Hashin-Shtrikman
(HS) upper bounds under a wide range of porosity values (from
0.05 to 0.75). Additionally, Li and coworkers [93] used a GAN to
generate new 3D lattice structures whose compression strength
was evaluated using a forward GP regressor [94], thus discovering
novel lattice architectures with high compression strength. More-
over, they utilized a GP regressor for finding novel 2D lattices
with high recovery stress [95].
Note that the design objective of these GAN-aided tasks is rela-

tively limited, e.g., to extremizing a specific property. When we
desire the target property to vary within a range, e.g., designing
functionally graded metamaterials with spatially varying properties
and microstructures, the problem becomes considerably more chal-
lenging. To tackle this challenge, Chen and coworkers [72] utilized
the VAE to aid the design process (Fig. 2(e)). After a large database
is built, the encoder within the VAE can compress the microstruc-
ture information into a low-dimensional, highly structured latent
space, from which the initial structure can be restored by the
decoder. A forward predictor (i.e., regressor) was further employed
to learn the relationship between the latent variables and the stiff-
ness. As shown in Fig. 2(e), by continuously sampling points in
the latent space, they generated diverse architecture families with
gradually varying geometries and stiffness. This, in conjunction
with conventional macroscale TO, enabled the multiscale design
of functionally graded metamaterials that achieve target shape
changes. Later on, Chen and coworkers [96] further utilized the
same approach for the design of metamaterial-based mechanical
cloaks. In addition to VAE, they employed latent variable GP to
obtain a latent space for the designs of 2D and 3D lattice metama-
terials [97].
Moreover, EA may be seen as a form of generative modeling,

which often requires high computational cost due to its stochastic
search nature. Yu et al. [98] recently combined EA with a
forward ML model to design lattice-based artificial spinal discs
with desired anisotropic behaviors.

2.3.2 Anisotropic Elasticity by a Forward Machine
Learning-Supervised Inverse Machine Learning Model. Alterna-
tively, Kochmann and coworkers [73] proposed a general inverse
design framework that ingeniously exploits a forward ML model
to supervise an inverse ML model and applied it to the spinodoid
metamaterials. Figure 2( f ) illustrates the concept of this approach.
The forward ML model, which takes the design parameters as input
to predict the stiffness (property), is pretrained using labeled data
and then leveraged to train the inverse model through the following
procedure. The inverse model takes the target property as input and
yields a trial design, which is fed into the forward model to predict
the trial property. The inverse ML model is trained by minimizing
the discrepancy between the predicted and target properties. Once
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trained, the inverse model can instantaneously generate the opti-
mized designs on demand while the forward and inverse models
together also provide a computationally efficient two-way struc-
ture–property mapping. Moreover, their approach enables the
design of spatially varying architectures for functional grading.
Later on, they extended this design framework to truss (or lattice)
metamaterials by incorporating an appropriate design parameteriza-
tion [99], as well as to the pore growth-based cellular metamaterials
[100]. More recently, they incorporated the forward ML model into
gradient-based multiscale TO, where the ML allows for rapid
forward homogenization for given microstructures and efficient
computation of gradients via automatic differentiation (AD),
enabling the accelerated multiscale TO of functionally graded spi-
nodoid metamaterials [101].

2.3.3 Stress–Strain Response. Owing to their unique micro-
structures, mechanical metamaterials often exhibit unusual stress–
strain curves under external loads. The rational design of these
structures, aimed at achieving diverse target load-deformation
responses, holds significant engineering values. Given the vast geo-
metric design space, ML has been exploited to accelerate the inverse
design process. For instance, Wang et al. [102] combined an NN
forward model and an EA to design novel central-symmetry, shell-
based metamaterials with various target compressive stress–strain
curves, such as strain hardening and softening. Note that a large
number of data points are needed to well represent a stress–strain
curve, which implies high data dimensionality and can impair
network performance. Employing multiple NNs can improve per-
formance while increasing computational cost [102].
This issue is addressed in an alternative study with a different

metamaterial (i.e., a kirigami metamaterial), where Deng et al.
[103] utilized PCA to condense the stress–strain data, obtaining
their principal components. They then trained an NN to directly
learn the relationship between the geometric design parameters
and the resulting principal components, which achieves high predic-
tion accuracy. Combining NN with an evolution strategy (a class of
EA), they achieved an effective inverse design. Notably, they also
attempted to use an inverse NN to map from response to design;
the results showed that an inverse NN does not perform well due
to the ill-posed nature of the inverse problem. Yet, a recent work
[104] with lattice metamaterials demonstrated the applicability of
a forward ML-supervised inverse ML (similar to that described in
Sec. 2.3.2) in designing stress–strain curves, where the appropri-
ately tailored design space is important. Moreover, the video-
denoising diffusion model has been used to design the stress–
strain response of cellular metamaterials, which can also concur-
rently predict the full-field internal stress distribution [105]. Addi-
tionally, Bayesian ML has been explored in the design of
super-compressible metamaterial blocks [106].
In addition to the mechanical response mentioned earlier, other

physical properties of metamaterials, including acoustic and
optical properties, have attracted significant interest and inspired
studies utilizing ML methods [107–110]. We will not elaborate
on these here but refer the readers to a recent review [111].

2.4 Active Shape-Change Response by 4D Printing. Inte-
grating 3D printing with active materials (or stimuli-responsive
materials) enables the emerging 4D printing technique [8]. The
ability of multimaterial 3D printing to spatially control the mechan-
ical properties of structures further offers a vast design space. In
general, the 4D printing concept is not limited to shape changes
but is also applicable to property or functionality changes. In this
section, we mainly discuss works using ML for designing shape-
change responses in 4D printing, possibly involving general
active material systems. Generally speaking, design for shape
change could be more challenging than that for mechanical proper-
ties such as stiffness and toughness, as high-dimensional data are
needed to fully describe a shape change.

2.4.1 Finite Element—Evolutionary Algorithm Approach. To
exploit the large design space offered by multimaterial 3D printing,
the computational design integrating mechanical simulations and
optimizations has become a highly capable tool. For example, the
gradient-based TO has made great progress [40–44,46–48], yet it
may suffer from low design efficiency and high numerical complex-
ity when geometric and material nonlinearities are involved. Alter-
natively, gradient-free optimization algorithms such as EA have
also achieved great success. For example, Hamel et al. [112]
employed the FE and EA (FE-EA) for the inverse design of
active composite (AC) beams with voxel-level material distribu-
tions. The approach was later extended to magneto-AC beams by
Wu et al. [113], who also developed a voxel-level encoding
approach in the DIW 3D printing method. Athinarayanarao et al.
[114] used an FE-EA approach to design AC beams integrated
with topological void voxels. The FE-EA approach is time-
consuming and cannot deal with very complicated target shapes.
This is because the EA typically requires numerous forward FE sim-
ulations to explore a large design space, thus suffering from high
computational cost.
To reduce the computational cost, researchers have developed

forward reduced order models (ROMs) to speed up evolutionary
designs for different material systems, such as 3D voxel ACs
[115,116] and magneto-AC beams [117,118]. Yet, faster forward
models, preferably capable of handling vast amounts of data, are
still highly desired to enable more efficient inverse designs. As
such, the ML approach is particularly suited for delivering ultrafast,
massive predictions and has been extensively exploited to address
the inverse design problem.

2.4.2 Integrated Forward Machine Learning and Optimization
Algorithms. One common approach is to use ML as a forward pre-
dictive model and subsequently integrate it with optimization algo-
rithms for the inverse design. In this case, it is crucial to select an
appropriate network architecture based on the specific design
problem (active material systems, target response, etc.). For AC
beams, Zhang et al. [119] applied multiple ML models to the
forward prediction problem and found that CNN performed best.
Later on, Sun et al. [120] found that the RNN is particularly
suited for the beam problem as it inherently preserves a sequential
data dependency similar to that arises from the beam deformation
(Fig. 3(a)). The RNN thus demonstrated remarkably high accuracy
in the forward shape prediction based on material distributions,
which then empowered EA to achieve highly efficient inverse
designs of complicated, even hand-drawn, target shapes. For
another AC system, magneto-mechanical metamaterials, Ma et al.
[121] ingeniously encoded the magnetization distribution into
a 2D array and utilized a deep residual network (ResNet) model
to learn the relationship between magnetization distribution
and active strain (Fig. 3(b)). They further demonstrated the
ResNet-empowered discrete artificial bee colony (DABC) algo-
rithm can rapidly achieve inverse designs for various target active
strains and Poisson’s ratios. In addition, ML has been used for
designing shape changes of auxetic metamaterials with hierarchical
pattern distributions [124] and for predicting the bending angle of
soft pneumatic robots given geometric parameters [125].

2.4.3 Inverse Machine Learning Approaches. One alternative
approach is to train an inverse ML model that maps from the
target response to the optimized design. For example, for inflatable
composite membranes, Forte et al. [122] successfully utilized an
inverse NN to learn the mapping from 3D target inflated shapes
to the optimized 2D pixel-level material distributions (Fig. 3(c)).
Similarly, for buckling mesosurfaces, Zhang and coworkers [123]
trained an inverse NN to directly predict the optimized microlattice
precursor configurations needed to realize complex target surfaces
upon buckling (Fig. 3(d )). More recently, they applied a similar
strategy for the inverse design of buckling frame structures that
can morph into complex target shapes [126]. Note that these
inverse ML models were all trained to learn the inverse mapping
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directly from the data. Despite their successes, such models may
struggle with complex inverse problems where multiple distinct
designs can produce very similar responses (thus causing a
one-to-many issue that can be harmful to the training), as exempli-
fied in the design of metamaterials [103]. In this case, the use
of forward ML to supervise an inverse ML model [73] can facil-
itate learning the inverse map, as discussed in Sec. 2.3.2. Espinosa
and coworkers [127] utilized this approach to program the shape
changes of kirigami metamaterials upon tension-induced buckling.

3 Perspective
It is typically more tractable to learn the forward mapping from

designs to responses given labeled data. However, the inverse
problem is challenging as it is ill-posed due to the large, often
infinite-dimensional, design space and the one-to-many mapping
nature from responses to designs. Moreover, in many design
tasks, instead of simply optimizing or extremizing a single property,
the target response is desired to vary within a range, such as achiev-
ing the various target mechanical properties or attaining different
target shape transformations under external stimuli. This scenario
makes the inverse design more challenging, particularly when the
target response involves high-dimensional data, such as the shape-
change response. ML holds significant promise in tackling these
challenges. In the following, we briefly summarize existing and
potential strategies for the effective application of ML in 3D/4D
printing designs (Fig. 4).
In inverse design, accurate forward prediction is crucial, and

depending on the specific problem, it may require varying
amounts of data. As the design space is typically huge, using
some data dimensionality reduction methods, such as PCA, DCT,
and autoencoder (AE), to pre-compress the data often facilitates

learning and improves performance. Additionally, observing the
specific problem to select an appropriate network architecture is
important. With an efficient forward ML (F-ML) model in place,
several strategies exist for optimization.

Fig. 3 Applications of ML in various active material systems for designing active shape-change responses. (a) Forward
predictions using RNN-based ML and inverse design using ML-EA for 4D-printed AC structures. Reproduced (adapted)
with permission from [120]. Copyright 2021, John Wiley and Sons. (b) Forward predictions using ResNet and inverse
design using a ResNet-empowered DABC algorithm for 4D-printed magneto-mechanical metamaterials. Reprinted with per-
mission from Ref. [121]. Copyright 2022 American Chemical Society. (c) Inverse design of inflatable composite membranes
using an inverse NN. Reproduced with permission from Ref. [122]. Copyright 2021, JohnWiley and Sons. (d ) Inverse design
of buckling mesosurfaces using an inverse NN [123]. Reprinted with permission from AAAS.

Fig. 4 Overview of ML strategies for designs in 3D/4D printing
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First, an F-ML can be combined with an optimization algorithm,
either gradient-based or gradient-free, for the inverse design. Com-
pared to conventional computational methods, the high speed of
ML allows for accelerated design with any optimization algorithms,
as they all involve the forward prediction steps. Additionally, the
automatic differentiability of F-ML allows for efficient computation
of gradients (or sensitivities) and thus can significantly accelerate
gradient-based optimizations.
Second, methods that utilize generative models like VAE [72] or

GAN [70,128] to generate new designs and use an F-ML for screen-
ing may be employed. Specifically, VAE can be used to create a
continuous, structured latent space, and in this case, the F-ML
can learn the mapping from the latent variables to the property.
Note that EA may also be seen as a form of generative modeling.
Third, integrated F-ML and RL may be used for the inverse

design. Previous studies have employed RL for the toughness max-
imization of 3D-printed composites [76] and the compliance mini-
mization of structural topologies [129]. In these works, the FE was
utilized for the reward evaluation during the RL training, which is
computationally expensive. Integrating pretrained F-ML with RL
could significantly improve design efficiency, rendering RL more
feasible for large-scale problems.
Furthermore, methods based on inverse ML (I-ML) can be used,

which may or may not need F-ML depending on the specific train-
ing strategy for the I-ML. One strategy is to directly train the inverse
model using labeled data, which can be effective at times [91,122]
but often fails for complex inverse problems [103,130] due to the
ill-definition (i.e., one-to-many mapping). An alternative strategy
leverages the F-ML to train the I-ML (i.e., F-ML-supervised
I-ML) [73]. In this case, the I-ML takes the target property as
input and yields a trial design, which is fed into the F-ML to
predict the trial property. The training of the inverse ML model is
done by minimizing the difference between the predicted and
target properties. Moreover, the I-ML training may be supervised
by other differentiable forward models such as ROMs, not necessar-
ily F-ML. For all strategies earlier, once the training is complete, the
I-ML can promptly generate the optimized designs.
To delve even further into the perspectives and, more specifi-

cally, to leverage the benefits of ML while ensuring a complete
understanding, there is a strategic need to integrate materials/
design informatics and ML for scientists [131–133]. This trend of
merging symbolic AI and ML is commonly referred to as neuro-
symbolic integration. It entails constructing a comprehensive
knowledge/database enhanced with computational procedures to
discover innovative materials and structures. Symbolic logic repre-
sentations can then be used in ML to incorporate background
knowledge in learning models and algorithms. This approach
ensures transparency to humans, deductive reasoning, the integra-
tion of expert knowledge, and structured generalization, particularly
in scenarios with limited data where physics is essential [134,135].
This symbolic AI layer proves valuable for working with small
datasets and/or providing rationale in quantitative investigations
involving extensive data generated from high-throughput computa-
tional materials design.
Beyond achieving material or structural designs with optimized

responses, the reliable and accurate printing of intended designs
is also crucial. This involves issues such as design optimizations
considering manufacturability/printability, printing parameter
refinement, quality monitoring and control, and material design
and discovery. Additionally, integrated design for the process–
structure–property mapping may be important [136]. Using DLP
as an example, the desired voxel-level material distributions may
deviate significantly from the actual printing, especially for small-
sized objects, due to factors such as light penetration, uneven
light distribution, and species reaction-diffusion [27,137]. In this
case, refining printing parameters (e.g., light field distribution) for
appropriate compensations poses a multiphysics inverse problem,
which may also be addressed using ML strategies outlined above.
In conclusion, this perspective paper highlights the rapidly

growing role of ML in addressing complex inverse design problems

in 3D/4D printing. First, we provide an overview of common
forward and inverse problems, relevant types of structures, and
design space and responses in 3D/4D printing. Next, by reviewing
recent works that employ a variety of ML approaches, we provide
an in-depth discussion on how ML can be harnessed to design
printed structures with specific mechanical responses, from struc-
tural properties to load-displacement responses, physical fields,
and active shape changes. Finally, after discussing the challenges,
we highlight the existing ML approaches and discuss their potential
extensions. Broader design problems in the field of 3D/4D printing
are further discussed. Despite existing challenges, the integration of
ML into 3D/4D printing design has immense potential to revolu-
tionize the field. Our work aims to serve as a foundational guide,
offering critical insights for researchers and practitioners looking
to leverage ML for efficient and intelligent designs in additive
manufacturing.
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