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Curved Ring Origami: Bistable
Elastic Folding for Magic Pattern
Reconfigurations
Ring origami has emerged as a robust strategy for designing foldable and deployable struc-
tures due to its impressive packing abilities achieved from snap-folding. In general, polyg-
onal rings with rationally designed geometric parameters can fold into compact three-loop
configurations with curved segments which result from the internal bending moment in the
folded state. Inspired by the internal bending moment-induced curvature in the folded state,
we explore how this curvature can be tuned by introducing initial natural curvature to the
segments of the polygonal rings in their deployed stress-free state, and study how this initial
curvature affects the folded configurations of the rings. Taking a clue from straight-seg-
mented polygonal rings that fold into overlapping curved loops, we find that this behavior
can be reversed by introducing curvature into the ring segments in the stress-free initial
state such that the rings fold into a looped straight-line configuration with “zero” area.
This strategy realizes extreme packing of the rings. In this work, by a combination of exper-
imental observation, finite element analysis, and theoretical modeling, we systematically
study the effect of segment curvature on folding behaviors, folded configurations, and
packing abilities of curved ring origami with different geometries. It is anticipated that
curved ring origami can open a new avenue for the design of foldable and deployable struc-
tures with simple folded configurations and high packing efficiency.
[DOI: 10.1115/1.4062221]
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1 Introduction
Foldable and deployable structures have attracted great attention

in recent decades due to their capabilities of shape reconfiguration
and significant size change, which have found widespread engineer-
ing applications such as deployable aerospace structures [1,2],
shape-morphing soft robots [3–5], and foldable medical devices
[6]. Among the different folding strategies, mechanical instability
has been intensively explored by utilizing the buckling and snap-
through behaviors of structures for self-guided shape reconfigura-
tion and size change [7–9]. Ring origami, a folding approach
based on snap-through instability, has been demonstrated as a
robust method for folding closed-loop rods of different geometries
(such as polygons) under bending or twisting loads [10–12]. The
snap-folding of well-designed ring origami can achieve high
packing efficiency. For example, a hexagonal ring can snap-fold
into a three-loop overlapping peach core-shaped configuration
with only 10.6% of its initial area [13]. Additionally, it was recently
found that introducing geometric modifications and residual strains
to the ring can facilitate the folding of ring origami by only a point
load or a localized twist with much reduced required energy input
[14]. The packing efficiency of ring origami can be further
enhanced by assembling multiple rings into two-dimensional (2D)
tessellations or three-dimensional (3D) structures [15]. Due to
these merits, ring origami is an ideal candidate to serve as the
basis for foldable and deployable functional structures such as

foldable solar panel devices [15], deployable space structures
[16], flexible electronics [17], and foldable tents [18].
In general, polygonal rings with straight segments and rationally

designed geometric parameters (cross-section shape, aspect ratio,
span of the ring, etc.) can fold into three-loop configurations with
curved segments (see Fig. 11 in Appendix A) which result from
the internal bending moment in the folded state. The curvature of
the folded ring can be fully predicted by the Kirchhoff rod model
and finite element analysis (FEA) [10,19]. Inspired by the internal
bending moment-induced curvature at the folded state, we have
recently explored how this curvature can be tuned by introducing
segments with initial natural curvature into the polygonal rings in
their deployed stress-free state, and how this initial curvature
affects the folded configurations of the rings. Although polygonal
segments with both initial natural curvature and initial bending
stress could be considered, only the role of initial natural curvature
is studied here. Thus, in this paper, all the deployed rings are stress-
free. An exciting discovery, which will be illustrated for several ring
geometries, is that it is possible to choose an initial natural segment
curvature such that the folded state is a pattern of straight loops with
an idealized area of zero. In the remainder of this Introduction,
several illustrations of the experimental observations explored
later in the paper will be previewed to indicate the nature of the
study and to whet the appetite of the reader for what follows.
In Fig. 1(a), a depiction of a straight-segmented hexagonal ring

that can fold into a three-loop fully overlapping peach core config-
uration is given. Then, in Fig. 1(b), we show how a hexagon with
segments having a particular natural curvature (defined later in
the paper) folds into a nearly straight-sided three-loop ring. The
photographs in Fig. 1 are of experimental realizations of the rings
(see Movie 1 available in the Supplemental Materials on the
ASME Digital Collection for the bistable elastic folding process
and see Appendix B for details on the ring fabrication). In principle,
the packing ratio (area of the folded state to area of the deployed
state) of the curved ring can decrease to zero if the corner radius

1Corresponding author.
This paper is dedicated to Professor Kyung-Suk Kim, for his contributions to exper-

imental and theoretical micro and nano-mechanics, and in celebration of his 70th
birthday.

Contributed by the Applied Mechanics Division of ASME for publication in the
JOURNAL OF APPLIED MECHANICS. Manuscript received March 20, 2023; final manuscript
received March 23, 2023; published online September 8, 2023. Assoc. Editor: Pradeep
Sharma.

Journal of Applied Mechanics DECEMBER 2023, Vol. 90 / 121013-1Copyright © 2023 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/appliedm

echanics/article-pdf/90/12/121013/7038621/jam
_90_12_121013.pdf by Stanford U

niversity user on 04 April 2024

mailto:jizedai@stanford.edu
mailto:lulu2@stanford.edu
mailto:leanza@stanford.edu
mailto:hutchinson@husm.harvard.edu
mailto:rrzhao@stanford.edu
http://dx.doi.org/10.1115/1.4062221
http://dx.doi.org/10.1115/1.4062221
https://crossmark.crossref.org/dialog/?doi=10.1115/1.4062221&domain=pdf&date_stamp=2023-09-08


is negligible and the segment thickness is ignored. In our speci-
mens, the corner radius, normalized by the segment radius (Rn), is
0.045 and the folded configuration of the curved hexagonal ring
is 4.1% of its initial area, which is about 2.5 times smaller than
the packing ratio of a hexagonal ring with straight segments
(10.6%) [13]. A folded configuration with straight segments can
also be obtained from a double-layer square ring (see Fig. 12 in
Appendix B for fabrication details). As shown in Fig. 1(c), the
double-layer square ring folds into a four-loop straight-line geome-
try, with a packing ratio of 9.4% with respect to the initial double-
layer ring. Additionally, a single-loop straight-line configuration
can be achieved by folding a single-layer “8”-shaped ring [20],
which has a packing ratio of 11.9% (Fig. 1(d )). Motivated by
such examples, the current work aims to study curved ring
origami by investigating the effect of segment curvature on their
folded configurations, snap-folding behaviors, and corresponding
packing abilities.
Broadly speaking, curved ring origami encompasses slender

structures with curved geometries that are widely seen in nature
and engineering applications such as biological filaments [21],
overhand knots [22], circular rings [11], and curved crease
origami [23]. In these structures, curvature plays a significant role
in their mechanical instabilities. It is worth noting that recent
papers have studied the effect of curvature on the instabilities of
rings or ring-like structures and found that curvature can induce
residual stress and thus tune the stability and the folded configura-
tions of circular rings [18,24,25], buckling and post-buckling pat-
terns of creased annular elastic strips [26], and bistability and
looping behaviors of creased annuli with discontinuities [27].
However, the focus of these previous studies is quite different
from those in this paper, where the emphasis is on the role of the
initial stress-free natural curvature of the polygonal ring segments.

To our knowledge, there is no existing work that examines how the
natural curvature of the polygonal ring segments affects the instabil-
ity and folding behavior of 2D curved ring origami. As demon-
strated in this paper, ring segments with stress-free natural
curvature can generate a rich set of folding configurations worthy
of further study.
This work combines experiments, FEA simulations, and theoret-

ical modeling to systematically study the effect of natural segment
curvature on the snap-folding of curved ring origami of different
geometries. In addition to the single-layer curved hexagonal ring
and double-layer curved square ring shown in Figs. 1(b) and 1(c),
which can fold into straight-line loop configurations, we also
study the variety of folded configurations achieved from single-
layer curved octagonal rings and double-layer curved hexagonal
rings with initial segment curvature. For each case, we present the
initial and folded configurations, moment-bending angle curves,
energy landscapes, packing ratios, and folding paths of the ring
origami. It is anticipated that the current work will provide guidance
for the design of foldable and deployable functional structures with
simple folded configurations and high packing efficiency, for poten-
tial application in deployable aerospace structures, foldable elec-
tronics, and reconfigurable architecture.
The remainder of this paper is organized as follows. In Sec. 2, we

describe the FEA and theoretical model used to study the snap-
folding of curved ring origami. In Sec. 3, we study the effect of
natural segment curvature on the folding behaviors and packing
abilities of single-layer curved hexagonal rings and single-layer
curved octagonal rings. In Sec. 4, we investigate the influence of
segment curvature on the folding behaviors and packing abilities
of double-layer curved square rings and double-layer curved hexag-
onal rings. Finally, in Sec. 5, we summarize the main findings of
this work.

Fig. 1 Folding of ring origami with straight segments and curved segments that enables a high
packing efficiency. (a) Single-layer hexagonal ring folds into a three-loop fully overlapping peach
core shape with a segment radius of Rn. (b) Single-layer curved hexagonal ring folds into a three-
loop straight-line geometry. Note that the curved hexagonal ring has the same segment length
and the same segment curvature, 1/Rn, as the folded configuration of a straight-segmented hexag-
onal ring. (c) Double-layer curved square ring folds into a four-loop straight-line geometry.
(d ) Single-layer “8”-shaped ring folds into a single-loop straight-line geometry. The initial and
folded configurations on the left are obtained from FEA simulations, while the bistable elastic
folding processes on the right are from experiments. The red dots denote the locations on the
ring where bending moments are applied. Scale bars: 5 cm.
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2 Method and Model
2.1 Finite Element Analysis. FEA simulations for the snap-

folding of both single-layer and double-layer rings are conducted
in the commercial software ABAQUS 2021 (Dassault Systèmes,
France). All the simulated rings have a circumcircle radius of
200 mm, a cross-sectional thickness and height of 0.5 mm and
2 mm, respectively, and a corner radius of 5 mm. For all simula-
tions, the C3D8R element is used with a mesh size of 0.1 mm.
Young’s Modulus and Poisson’s ratio used are E= 200 GPa and
ν = 0.3, respectively. The boundary conditions at the loading points
for single-layer and double-layer rings are not the same. For single-
layer rings, a pair of bending angles are applied to both the left and
right corners. For double-layer rings, the bending angles are applied
on the left corners of both layers. In addition, a small damping is
used to stabilize all simulations, which produces negligible
energy dissipation (see Appendix C for details).

2.2 Theoretical Model. The Kirchhoff rod model has been
widely used in modeling the mechanical behaviors of slender struc-
tures [28–31] and is adopted to study the snap-folding behaviors of
ring origami with curved segments. A schematic of a naturally
curved rod of length L, thickness t, and height h is shown in
Fig. 2(a). The rod is assumed to be unshearable and inextensible,
which means that the centerline of the rod is always perpendicular
to the cross-section and the length of the rod remains unchanged
during deformation. The deformation of the centerline can be
described by a position vector p(s)= p1E1+ p2E2+ p3E3 in the
global basis (E1, E2, E3), where s∈[0, L] is the arc length coordi-
nate. Moreover, a local basis [e1(s), e2(s), e3(s)] is attached to the
centerline of the rod with e1 and e2 being unit vectors along the
height direction and thickness direction, respectively, and e3
being the unit tangent vector of the centerline, which indicates
p′ = e3. Throughout the paper, a prime denotes differentiation
with respect to the arc length coordinate s, i.e., (·)′ = d(·)/ds. The
kinematics of the local basis is determined by e′i = ω × ei (i= 1,
2, 3), where ω = κ1e1 + κ2e2 + κ3e3 is the Darboux vector, κ1 and
κ2 are the bending curvatures, and κ3 is the twisting curvature.
Based on the Kirchhoff rod theory, in the absence of body forces
and couples, the internal force N and moment M on the centerline
of the rod satisfy

N′ = 0,

M′ + p′ × N = 0
(1)

where N=N1e1+N2e2+N3e3 and M=M1e1+M2e2+M3e3. Pro-
jecting Eq. (1) along the local basis (e1, e2, e3) provides six equilib-
rium equations

N ′
1 − N2κ3 + N3κ2 = 0

N ′
2 − N3κ1 + N1κ3 = 0

N ′
3 − N1κ2 + N2κ1 = 0

M′
1 −M2κ3 +M3κ2 − N2 = 0

M′
2 +M1κ3 −M3κ1 + N1 = 0

M′
3 −M1κ2 +M2κ1 = 0

(2)

Considering linear constitutive relations, the internal moment can
be written as

M = EI1(κ1 − κ(0)1 )e1 + EI2(κ2 − κ(0)2 )e2 + GJ(κ3 − κ(0)3 )e3 (3)

where E and G are the Young’s modulus and the shear modulus of
the rod, respectively. G=E/[2(1+ ν)], where ν is the Poisson’s
ratio. I1 = ht3/12 and I2= h3t/12 are the moments of inertia, and J
is the rotational constant. For a rod with a rectangular cross

section, J = λht3/3 with [32]

λ = 1 −
192
π5

t

h

∑∞
k=1

1

(2k − 1)5
tanh

(2k − 1)πh
2t

( )
(4)

In Eq. (3), κ(0)1 , κ(0)2 , and κ(0)3 represent the initial bending curva-
tures and twisting curvature of the rod. In the present work, all
rings stay in a plane without pre-twist in the initial state, and there-
fore κ(0)2 = κ(0)3 = 0.
Further, a unit quaternion q(s)= [q0, q1, q2, q3] is introduced to

relate the local basis and the global basis [33,34], as

[e1, e2, e3]T = [Q][E1, E2, E3]
T (5)

with

[Q] = 2

q20 + q21 −
1
2

q1q2 + q0q3 q1q3 − q0q2

q1q2 − q0q3 q20 + q22 −
1
2

q2q3 + q0q1

q1q3 + q0q2 q2q3 − q0q1 q20 + q23 −
1
2

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

(6)

Based on Eq. (5) and p′ = e3, one can obtain that

p′1 = 2(q1q3 + q0q2)

p′2 = 2(q2q3 − q0q1)

q′3 = 2(q20 + q23) − 1

(7)

Taking the derivative of Eq. (5) and using e′i =ω × ei, we have

q′0 = (−q1κ1 − q2κ2 − q3κ3)/2

q′1 = (q0κ1 − q3κ2 + q2κ3)/2

q′2 = (q3κ1 + q0κ2 − q1κ3)/2

q′3 = (−q2κ1 + q1κ2 + q0κ3)/2

(8)

Equations (2), (7), and (8) provide thirteen governing equations
for the rod, which include thirteen unknowns, i.e., the internal
forces (N1, N2, N3), the curvatures (κ1, κ2, κ3), the position vector
components (p1, p2, p3), and the quaternion components (q0, q1,
q2, q3). When supplemented with appropriate boundary conditions,
the differential equation system forms a well-posed boundary value
problem (BVP).
For ring origami consisting of polygons with curved segments

and rounded corners, the natural curvatures at the joints of the seg-
ments and the corners are discontinuous, and therefore, the rings
have to be divided into multiple segments such that each segment
can be modeled as a Kirchhoff rod. The details of the curvature
in the corner joints are not modeled, but, instead, conditions of con-
tinuity across the joints are imposed. Such a multi-segment rod
model has recently been used to study the multi-stability of
bigons and bigon rings (two-sided curved segment polygons)
[35], snap-folding of ring origami with different geometries [19],
and snap-folding of hexagonal ring origami with residual strain

Fig. 2 Schematics of (a) the rod model and (b) a curved hexag-
onal ring. The local basis (e1, e2, e3) is attached to the centerlines
of the rod and the ring, and the global basis (E1, E2, E3) is located
at the center of the ring.
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and pre-twisted segments [14]. For a ring divided into m segments,
there are 13m governing equations containing 13m unknown vari-
ables, which require 13m boundary conditions to produce a well-
posed BVP. The variables for the jth segment of the rod are
denoted by [Nij, κij, pij, q0j, qij] (i= 1, 2, 3, and j= 1, 2, ⋯, m), in
which Nij and κij are defined in the local basis (e1, e2, e3) and pij
is defined in the global basis (E1, E2, E3). For simplicity, we intro-
duce the following quantities to normalize the relevant variables

�Nij =
NijR2

0

GJ
, (�κij, �κ

(0)
ij ) = (κij, κ

(0)
ij )R0, �pij =

pij
R0

�sj =
sj
R0lj

,
d(·)
d�sj

= R0lj
d(·)
dsj

(9)

where R0 is the circumcircle radius of the curved segment ring, Lj is
the length of the jth segment, and lj= Lj/R0 is a scaling factor that
unifies the normalized arc length of different segments into the
same range [0, 1]. By using these normalized quantities, the 13m
governing equations for the multi-segment rod system can be
written as

�N ′
1j = (�N2j�κ3j − �N3j�κ2j)lj, �N ′

2j = (�N3j�κ1j − �N1j�κ3j)lj

�N ′
3j = (�N1j�κ2j − �N2j�κ1j)lj

�κ′1j = (�κ(0)1j )
′ + [(β − 1)�κ2j�κ3j + �N2j]lj/α

�κ′2j = −[α(�κ1j − �κ(0)1j )�κ3j − �κ3j�κ1j + �N1j]lj/β

�κ′3j = [α(�κ1j − �κ(0)1j )�κ2j − β�κ2j�κ1j]lj

�p′1j = 2(q1jq3j + q0jq2j)lj, �p′2j = 2(q2jq3j − q0jq1j)lj

�p′3j = (2q20j + 2q23j − 1)lj

q′0j = (−q1j�κ1j − q2j�κ2j − q3j�κ3j)lj/2,

q′1j = (q0j�κ1j − q3j�κ2j + q2j�κ3j)lj/2

q′2j = (q3j�κ1j + q0j�κ2j − q1j�κ3j)lj/2,

q′3j = (−q2j�κ1j + q1j�κ2j + q0j�κ3j)lj/2

(10)

where α and β represent the bending-to-torsional rigidity ratios and
are given by

α =
EI1
GJ

=
1 + ν

2λ
, β =

EI2
GJ

=
1 + ν

2λ
h

t

( )2

(11)

For single-layer hexagonal and octagonal rings studied here, we
only need to take one-quarter of them for the analysis due to the
symmetry, and then, the quarter rings are sub-divided into their
curved segments (m= 4 for the hexagonal ring, as shown in
Fig. 2(b), and m= 5 for the octagonal ring). In the present work,
we apply bending loads to fold the ring, and thus, the corresponding
boundary conditions at the left boundary of the first segment �s1 = 0
should satisfy [14]

�N21 = 0, �p11 = 0, �p31 = 0, �κ31 = 0, q11 = 0, q21 = 0

(12)

and at the right boundary of the mth segment �sm = 1, boundary con-
ditions are

�N1m = 0, �N2m = 0, �p2m = 0, q0m =

��
2

√

2
cos

θ

2

( )

q1m =

��
2

√

2
cos

θ

2

( )
, q2m =

��
2

√

2
sin

θ

2

( )
, q3m = −

��
2

√

2
sin

θ

2

( )

(13)

Here, θ is the bending angle at the loading positions. Addition-
ally, by considering the force equilibrium and geometric

compatibility at the joints of adjacent segments, we can obtain
12(n−1) continuous boundary conditions for �N1j, �N2j, �N3j, �κ2j,
�κ3j, �p1j, �p2j, �p3j, q0j, q1j, q2j, q3j and (n−1) jumped boundary con-
ditions for �κ1j. These boundary conditions together with those pro-
vided by Eqs. (12) and (13) produce a well-posed BVP for the
multi-rod system, which can be solved using various numerical con-
tinuation methods. Here, the Continuation Core and Toolboxes
(COCO) [36,37] operated in MATLAB is used. In the numerical
implementation, the bending angle θ is set as the continuation
parameter, which varies from 0 to π. After the governing equation
systems are solved, the bending moment needed to prescribe the
bending angle θ equals the internal moment at the loading points,
which is given by

�M =
MR0

GJ
=
M3mR0

GJ
= �κ3m (14)

3 Snap-Folding of Single-Layer Curved Rings
In this section, the influences of segment curvature on folded con-

figurations of single-layer curved polygonal rings and their corre-
sponding packing ratios are studied based on FEA simulations
and the rod model. We first study single-layer curved hexagonal
rings that can fold into fully overlapping configurations.
Figure 3(a) shows the initial and folded configurations of single-
layer hexagonal rings with different segment curvatures (see
Movie 2 available in the Supplemental Materials for the folding pro-
cesses). The normalized segment curvature is defined as R0/Rn,
where R0 is the radius of the circumcircle of the ring and Rn is
the natural radius of the ring segment in the deployed, unstressed
state, with Rn being negative or positive. From here on, rings
with negative Rn will be referred to as concave (curved inwards)
while those with positive Rn will be referred to as convex (curved
outward). Note that the use of the terminology concave or convex
does not refer to the convexity of the ring itself. Here, single-layer
hexagonal rings with six normalized natural curvatures (with the
same R0) ranging from −2.1 to 3 are studied. The rings with R0/
Rn=−2.1 and 3 are two extreme cases where the adjacent segments
of the rings merge with a common tangent or cusp. When R0/Rn= 0,
the hexagonal ring with straight segments (corresponding to Rn=
∞) folds into a three-loop overlapping peach core structure,
which has been reported in our previous work [13,15]. Interestingly,
for concave cases, as the segment curvature decreases from 0 to a
critical value of −1.8, the folded state gradually transforms from
a peach core shape to a three-loop straight-line configuration
which has the smallest area among all folded states of the curved
hexagonal rings studied here. This critical segment curvature (R0/
Rn=−1.8) is equal to the segment curvature of the peach core-
shaped configuration folded from a hexagonal ring with straight
segments (R0/Rn= 0). Continuing to decrease the segment curvature
results in a folded configuration whose top and bottom segments
intersect with each other (e.g., R0/Rn=−2.1). For convex cases,
the folded states change from a peach core shape to a peanut
shape (e.g., R0/Rn= 2) upon increasing the segment curvature
from R0/Rn= 0. Interestingly, we find that the hexagonal ring with
R0/Rn= 3 no longer folds into an overlapping configuration.
Instead, it inverts via torsional rotation around the entire ring
from a ring with convex segments to a ring with concave segments.
Note that a three-loop configuration of this ring is still achievable by
imposing additional constraints on the ring during folding. This
multistable behavior is worth further investigation but will not be
the focus of this paper.
Variations of the normalized moment (MR0/GJ) with respect to

the bending angle (θ) for a series of hexagonal rings, predicted by
the FEA simulations and the rod model, are plotted in Fig. 3(b).
The theoretical results match the FEA results with good accuracy.
The peak of each curve is the snapping point, i.e., the point
where snap-folding is triggered. Upon applying a bending angle,
θ, and after reaching the snapping point, the ring folds to its final
configuration in a self-guided manner. It can be observed that the
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maximum moment for the ring with R0/Rn= 3 is the lowest among
various hexagonal rings. This is because it merely needs to invert, or
“turn inside out”, instead of folding to a multiloop overlapping
state. Figure 3(c) shows the relationship between the normalized
strain energy (UR0/GJ) and the bending angle (θ) for single-layer
hexagonal rings with different segment curvatures during the
folding process. We find that the strain energy obtained from
FEA agrees well with that evaluated by the rod model. Specifically,
each energy curve of the hexagonal rings shows two local mini-
mum points: one is located at θ= 0, corresponding to the initial

state, and the other is near θ= π, corresponding to the folded state,
indicating a bistable elastic folding behavior. Figure 3(d ) compares
the calculated packing ratios of hexagonal rings with different
segment curvatures. Here, the packing ratio is defined as the area
ratio of the folded configuration to the initial configuration. Benefit-
ting from its straight-line folded configuration, the hexagonal ring
having concave segments with R0/Rn=−1.8 exhibits the best
packing ability with a packing ratio of 4.1%, which is 2.5 times
smaller than that of the hexagonal ring with straight segments
(10.6%). By contrast, the hexagonal ring having convex segments

Fig. 3 Snap-folding of single-layer hexagonal rings with different segment curvatures under
bending applied at corners. (a) Initial states and folded states of single-layer hexagonal rings
with different segment curvatures. The blue dots denote the bending locations. FEA and
theoretical results of (b) normalized moment-bending angle curves and (c) normalized strain
energy-bending angle curves for single-layer hexagonal rings. (d ) Packing ratios of single-layer
hexagonal rings with different segment curvatures.

Fig. 4 Snap-folding paths of single-layer hexagonal rings with different segment curvatures.
The blue and orange dots denote the bending locations.
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with R0/Rn= 3 (whose segments meet at a cusp) has a packing ratio
of 43.9% since its folded configuration is still a single-loop geom-
etry. As the segment curvature varies from −1.8 to 2, the packing
ratio increases from 4.1% to 11.3%. Therefore, the packing effi-
ciency of a hexagonal ring can be improved by introducing
concave segments with appropriate curvature. Folding paths of hex-
agonal rings with several different segment curvatures under
bending loads are illustrated in Fig. 4. It is seen that the rings
rapidly reduce in size after the snapping point is reached. For the
hexagonal ring with R0/Rn= 3, unlike the other rings that fold
into a three-loop overlapping configuration, it inverts into a single-
loop geometry that is similar to the concave hexagonal ring. As
mentioned earlier, the three-loop configuration is achievable by
imposing additional constraints during folding.
Next, we study the effect of segment curvature on the folded con-

figurations and packing ratios of single-layer curved octagonal
rings. Unlike hexagonal rings, octagonal rings cannot fold into
fully overlapping three-loop configurations as their segment
number are not 3n, where n is an integer greater than or equal to
2 [12,15]. Initial and folded configurations of six octagonal rings
with different segment curvatures are presented in Fig. 5(a) (see
Movie 3 available in the Supplemental Materials for the folding
processes), in which the rings with R0/Rn=−2.87 and 3.63 are
the two extreme cases where their adjacent curved segments form
cusps. It is seen that the octagonal ring with straight segments
(R0/Rn= 0) folds into a wreath shape. For the concave segments
with curvature decreasing from 0 to –1.94, the folded configurations
of the curved octagonal rings change from a wreath shape to an
octagram. For the convex segments, the ring with R0/Rn= 2 folds
into a more compact wreath shape. For the two extreme cases,
R0/Rn=−2.87 and 3.63, the curved octagonal rings invert and
retain their single-loop form but reverse their segment curvatures
from concave to convex and vice versa.
Figures 5(b) and 5(c) show the normalized moment-bending

angle curves and the normalized strain energy-bending angle
curves for single-layer octagonal rings with different segment cur-
vatures, respectively. It is seen from Fig. 5(b) that all six rings
exhibit the snap-folding behavior described earlier. Similar to
what was observed for the curved hexagonal rings, the maximum
moments for the two extreme cases (R0/Rn=−2.87 and 3.63) are

much lower than those of the other geometries. Moreover, the
energy landscapes indicate that all the rings are stable at both
their initial and folded states. In other words, the rings display bis-
table elastic folding.
The packing ratios of single-layer octagonal rings are illustrated

in Fig. 5(d ). Among the six different segment curvatures consid-
ered, the curved octagonal ring with R0/Rn= 2 exhibits the best
packing ability with a ratio of 12.9%, which is slightly lower than
that of the octagonal ring with straight segments (13.4%). As the
segment curvature decreases from 2 to −1.94, the packing ratio of
the single-layer octagonal rings gradually increases from 12.9%
to 17.2%. This indicates that the curved octagonal rings tend to
have better packing ability when their segments are convex, con-
trary to the single-layer curved hexagonal rings. The two curved
octagonal rings whose tangent segments merge as cusps (R0/Rn=
−2.87 and 3.63) have packing efficiencies much lower than the
other octagonal rings, because their inverted shapes are single-
looped. In Fig. 6, folding paths are illustrated for single-layer octag-
onal rings with various segment curvatures under bending loads. It
is seen that the octagonal rings with R0/Rn=−1.94, 0, and 2 snap-
fold into much smaller sized configurations once the bending
angle passes the snapping point, while the sizes of the two curved
octagonal rings with R0/Rn=−2.87 and 3.63 change minimally
during folding.

4 Snap-Folding of Double-Layer Curved Rings
In this section, the effects of segment curvature on folded config-

urations and packing ratios of double-layer curved rings are exam-
ined based on FEA simulations. Here, double-layer rings are
continuous rods with two loops stacked on one another, which
can be obtained by coiling a disconnected ring by π and then recon-
necting it (see Appendix B for details on double-layer square rings).
We first study the snap-folding behaviors of double-layer curved
square rings that can fold into fully overlapping folded configura-
tions under bending loads. Note that the bending loads are
applied at the left corners of both layers. In Fig. 7(a), the initial
and folded states of the double-layer square rings with six different
segment curvatures varying from −1.28 to 2.42 are presented (see

Fig. 5 Snap-folding of single-layer octagonal rings with different segment curvatures under
applied bending loads at corners. (a) Initial states and folded states of single-layer octagonal
rings with various segment curvatures. The blue dots denote the bending locations. FEA and the-
oretical results of (b) normalizedmoment-bending angle curves and (c) normalized strain energy-
bending angle curves for single-layer curved octagonal rings. (d ) Packing ratios of single-layer
octagonal rings with various segment curvatures.
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Fig. 6 Snap-folding paths of single-layer octagonal rings with various segment curvatures. The
blue and orange dots denote the bending locations.

Fig. 7 Snap-folding of double-layer square rings with six different segment curvatures under
bending loads. (a) Initial states and folded states of double-layer square rings with different
segment curvatures. The bending loads are applied at the left corners of both layers, which
are denoted by blue dots. FEA results of (b) normalized moment-bending angle curves and
(c) normalized strain energy-bending angle curves for double-layer square rings with different
segment curvatures. (d ) Packing ratios of double-layer square rings with different segment
curvatures.
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Movie 4 available in the Supplemental Materials for the folding
processes), in which rings with R0/Rn=−1.28 and 2.42 are two
extreme cases where their adjacent tangent curved segments form
cusps. It is found that the double-layer square ring with straight seg-
ments (R0/Rn= 0) can fold into a four-loop overlapping peach core

configuration. This is different than the case of a single-layer square
ring, which has a non-fully overlapping cross-shaped folded config-
uration [12,15]. As the segment curvature decreases, the folded con-
figuration of the double-layer square ring with concave segments
gradually flattens. Particularly, the ring with R0/Rn=−1 folds into

Fig. 8 Isometric views of the folding paths of the double-layer square rings with different
segment curvatures. The bending loads are applied at the left corners of both layers, and the
bending locations are denoted by blue dots.

Fig. 9 Snap-folding of double-layer hexagonal rings with different segment curvatures under
bending loads. (a) Initial states and folded states of double-layer hexagonal rings with different
segment curvatures. The bending loads are applied at the left corners of both layers, and the
bending locations are denoted by blue dots. FEA results of (b) normalized moment-bending
angle curves and (c) normalized strain energy-bending angle curves for double-layer hexagonal
rings with different segment curvatures. (d ) Packing ratios of double-layer hexagonal rings with
different segment curvatures.
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a highly compact four-loop straight-line configuration with the
smallest packing area. When the segment curvature continues to
decrease, the top and bottom segments of the straight-line loop
begin to intersect with each other. By contrast, when increasing
the segment curvature to 1, the initial state of the double-layer
square ring turns into a double-layer circular ring, which folds
into a four-loop circular ring with half the radius of its initial con-
figuration. With the segment curvature changing from 1 to 2, the
folded configuration gradually changes from a circle to a peanut
shape. Lastly, for the convex ring with adjacent segments tangent
to one another (R0/Rn= 2.42), the double-layer square ring is no
longer observed to be foldable and deforms into an unstable 3D
configuration.
Variations of the normalized moment (MR0/GJ) with respect to

the bending angle (θ) for double-layer square rings with various
segment curvatures are shown in Fig. 7(b). For rings with
segment curvatures from −1.28 to 2, the normalized moment first
increases to the snapping point and then decreases below zero,
revealing that these five rings undergo snap-folding behavior. For
the double-layer square ring with R0/Rn= 2.42, however, the nor-
malized moment does not decrease towards zero after passing the
peak point, suggesting that the ring is unfoldable. Figure 7(c) illus-
trates the relationship between the normalized strain energy (UR0/
GJ) and bending angle (θ) for the double-layer square rings with
different segment curvatures. For the five rings exhibiting snap-
folding behavior, their energy curves have two local minima at
θ = 0 and near θ= π, which means both the initial and folded
states of these rings are stable. However, the strain energy of the
ring with R0/Rn= 2.42 monotonically increases as the bending
angle varies from 0 to π, revealing that the ring is only stable at
its initial state. The packing ratios of double-layer square rings
with different segment curvatures are shown in Fig. 7(d ). As
expected, the double-layer square ring with segment curvature
R0/Rn=−1 possesses the best packing ability due to its straight-line

configuration, whose packing ratio is only 9.4%. We can also see
that the packing ratio of the double-layer square ring rapidly
increases from 9.4% to 24.2% as the segment curvature changes
from −1 to 0, while it nearly remains unchanged when increasing
the segment curvature from 0 to 2. Therefore, the packing ability
of the double-layer square ring can be effectively improved by
introducing concave segments with a relatively small curvature.
For the double-layer square ring with R0/Rn=−1.28, it has the
lowest packing efficiency with a value of 34.2%. Isometrical
views of the folding paths for the double-layer square rings with
various segment curvatures under bending loads are shown in
Fig. 8, where the front and back layers of the rings are denoted
by black and orange, respectively. Note that the bending loads are
applied on the left corners of both layers. During folding, the
double-layer square rings with R0/Rn=−1, 0, and 2 first bend in
opposite directions and then snap-fold to different four-loop fully
overlapping geometries. For the double-layer square ring with R0/
Rn= 2.42, it can only be reconfigured to an unstable 3D configura-
tion when the bending angle increases from 0 to π.
Finally, we investigate the influence of segment curvature on the

folded configurations and packing ratios of double-layer hexagonal
rings. Figure 9(a) shows the initial and folded configurations of
double-layer hexagonal rings with different segment curvatures
(see Movie 5 available in the Supplemental Materials for the
folding processes). Here, six different segment curvatures varying
from −2.1 to 3 are considered, with segment curvatures R0/Rn=
−2.1 and 3 corresponding to cases where adjacent segments of
the rings are tangent. It is seen that the double-layer hexagonal
ring with straight segments (R0/Rn= 0) folds into a four-loop trian-
gle with convex segments, instead of folding into a three-loop peach
core shape like the single-layer hexagonal ring. When the segment
curvature decreases from 0 to −2, the folded configurations of the
rings change from a convex triangle (R0/Rn= 0) to an equilateral
triangle (R0/Rn=−1) and then to a concave triangle (R0/Rn=−2).

Fig. 10 Isometric views of the folding paths of double-layer hexagonal rings with different
segment curvatures under bending loads. The bending loads are applied at the left corners of
both layers, and the bending locations are denoted by blue dots.
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For the double-layer hexagonal ring with R0/Rn=−2.1, it folds into
a triangle with intersected adjacent segments and has the smallest
area among the various folded configurations. For double-layer hex-
agonal rings with convex segments, the ring folds into a geometry
with three rounded segments when R0/Rn= 2, but it appears to
become unfoldable when R0/Rn= 3.
Variations of the normalized moment and the normalized strain

energy with respect to the bending angle for the six different
double-layer hexagonal rings during their folding processes are pre-
sented in Figs. 9(b) and 9(c), respectively. It is seen from Fig. 9(b)
that the double-layer hexagonal rings, with segment curvatures
from −2.1 to 2, fold from their initial states to the final states via
the snap-through instability. The energy curves in Fig. 9(c) show
that both the initial and folded states of these rings are stable,
which implies that they experience bistable elastic folding behav-
iors. Also, we can find that the double-layer hexagonal ring with
R0/Rn= 3 is unfoldable, as its normalized strain energy monotoni-
cally increases as the bending angle increases. Figure 9(d ) com-
pares the packing ratios of the five foldable double-layer
hexagonal rings. It is seen that the ring with tangent concave seg-
ments (R0/Rn=−2.1) shows the best packing ability, as its folded
configuration is only 11% of its initial area. As the segment curva-
ture increases from −2.1 to −1, the packing ratio rapidly increases
from 11% to 24.1%, while it only increases slightly from 24.1% to
25.1% when the segment curvature increases from −1 to 2. There-
fore, for double-layer hexagonal rings, introducing concave seg-
ments with a relatively large curvature can result in a higher
packing efficiency. The isometric views of the folding paths of
double-layer hexagonal rings with different segment curvatures
under bending loads are shown in Fig. 10. One can find that for
R0/Rn=−1, 0, and 2, the rings undergo a similar folding
process from their initial states to the four-loop overlapping
states. For R0/Rn= 3, however, the double-layer hexagonal ring
with tangent convex segments can only fold to an unstable 3D
configuration.

5 Conclusion
In this work, we have studied the effects of segment curvature on

the snap-folding and packing abilities of curved ring origami based
on a combination of experiments, finite element analysis, and theo-
retical modeling. Four types of curved ring origami have been con-
sidered: single-layer hexagonal rings and octagonal rings, as well as
double-layer square rings and hexagonal rings. The observations
and associated calculations indicate that segment curvature has a
significant influence on the folded configurations and packing abil-
ities of curved ring origami. An unusually rich variety of behavior
has been observed in our experiments, and we readily admit that this
study has not been exhaustive. Nevertheless, we hope the reported
results will prompt further study of the phenomena and stimulate
applications in relevant fields.
For the single-layer hexagonal ring and double-layer square and

hexagonal rings, their packing abilities can be significantly

improved by introducing concave segments with appropriate
segment curvatures, due to the fully overlapping folded states
achievable. Particularly, the single-layer hexagonal rings and
double-layer square rings can fold into straight-line loop configura-
tions when their normalized segment curvatures equal −1.8 and −1,
respectively. Their unique folded configurations also enable the
highest packing efficiency for single-layer rings and double-layer
rings, with a value of 4.1% and 9.4%, respectively. Although invert-
ing behavior is preferred over folding for the convex hexagonal ring
with large curvature, the fully overlapping folded state is still
achievable when imposing additional constraints during folding.
For single-layer octagonal rings, however, they cannot fold into
fully overlapping states and their packing ability tends to only
improve slightly when convex segments are introduced. It is
expected that the proposed curved ring origami can provide a
new perspective for the design of foldable and deployable
structures with simple folded configurations and high packing effi-
ciency with great potential in applications including deployable
aerospace structures, foldable electronics, and reconfigurable
architecture.
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Appendix A. Folded Configurations of Polygonal Rings
Figure 11 shows the folded configurations of various polygonal

rings. It is seen that polygonal rings can only fold into three-loop
fully overlapping configurations when the segment number of the
polygonal rings equals 3n (n must be an integer greater than or
equal to 2).

Appendix B. Fabrication of Curved Rings
The rings in Fig. 1 are fabricated by manually reshaping stainless

steel wires and connecting the two ends. To create a double-layer
square ring, we first disconnect a single-layer octagonal ring, and
then coil it into two loops, as shown in Fig. 12. Finally, we
connect both ends of the disconnected ring to form a double-layer
square ring.

Fig. 11 Initial and folded states of various polygonal rings
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Appendix C. Energy Dissipation in FEA
For all FEA simulations in ABAQUS, a small damping factor

of 10−8 is added to stabilize the buckling simulations of the rings.
The corresponding energy dissipation is negligible. For example,
Fig. 13 shows the normalized energy-bending angle curves of a
hexagonal ring with straight segments during folding. It is seen
that the energy dissipation is almost zero compared to the strain
energy during folding.
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Fig. 13 Normalized strain energy and dissipated energy during
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