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The Primary Bilayer Ruga-Phase
Diagram II: Irreversibility in
Ruga Evolution
When an elastic thin-film/substrate bilayer is cyclically compressed with a large plane-
strain stroke, various surface morphologies develop either reversibly or irreversibly with
cyclic hysteresis. Here, we examine the cyclic morphology evolution with extensive finite-
element analyses and present a generic irreversibility map on the primary bilayer Ruga-
phase diagram (PB-RPD). The term “PB” refers to a system of a film on a substrate,
both of which are incompressible neo-Hookean, while the term “Ruga-phase” refers to
the classification of corrugated surface morphologies. Our generic map reveals two con-
figurational irreversibility types of Ruga-phases during a loading and unloading cycle.
One, localization irreversibility, is caused by unstable crease localization and the other,
modal irreversibility, by unstable mode transitions of wrinkle-Ruga configurations. While
the instability of crease localization depends mainly on smoothness of the creasing sur-
face or interface, the instability of Ruga-mode transition is sensitive to film/substrate stiff-
ness ratio, film/substrate strain mismatch (epsÞ, and material viscosity of the bilayer. For
small strain mismatches (eps � 0.5), PB Ruga structures are ordered; otherwise, for large
strain mismatches, the Ruga structures can evolve to ridge configurations. For evolution
of ordered Ruga phases, the configurational irreversibility leads to shake-down or diver-
gence of cyclic hysteresis. Underlying mechanisms of the cyclic hysteresis are found to
be the unstable Ruga-phase transitions of mode-period multiplications in the loading
cycle, followed by either mode “locking” or primary-period “switching” in the unloading
cycle. In addition, we found that the primary-period switching is promoted by the strain
mismatch and material viscosity. These results indicate that various Ruga configurations
can be excited, and thus, diverse Ruga-phases can coexist, under cyclic loading. Our irre-
versibility map will be useful in controlling reversibility as well as uniformity of Ruga
configurations in many practical applications. [DOI: 10.1115/1.4033722]

Keywords: Ruga-phase, primary bilayer, neo-Hookean, cyclic configurational irreversi-
bility, cyclic stability

1 Introduction

Recent studies [1–9] on Ruga patterns, such as wrinkles,
creases, ridges, and folds, directed us to construct, in our previous
paper [10], a comprehensive PB-RPD of a neo-Hookean bilayer

system under monotonic compressive loading on the �k – e plane.

Here, �k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ls=lf

3

q
denotes a normalized characteristic wave-

number, which represents a scaled relative shear modulus of the
substrate (lsÞ to the film (lf Þ, and e is the compressive strain. We

showed on the PB-RPD that the system develops various stable

equilibrium configurations of Ruga-phases, depending on �k and e.
Therein, we analyzed evolution paths of various Ruga-phases
under gradually increasing compressive loading starting from the
flat state to the ultimate global localization. The PB-RPD is
expected to serve as a guiding map to engineering multifunctional
Ruga materials which have a wide range of applications, such as
stretchable electronics, soft robotics, and bio-inspired adhesion
devices [11–20].

However, in practical applications, materials normally experi-
ence repetitive cycles of loading and unloading, for example,
charging/discharging of dielectric elastomer actuators in soft
robotics and mechanical or thermal cyclic loading of stretchable
electronic devices. During these cyclic loading processes, surface
morphologies and material response characteristics can change
significantly. Therefore, it is crucial to evaluate irreversibility of

the Ruga-phases on the PB-RPD. Recently, several studies have
revealed that particular Ruga-phases are irreversible during
unloading. For instance, Hohlfeld and Mahadevan [21] and Diab
and Kim [22] analyzed the irreversibility of free-surface creasing
of a neo-Hookean solid, and Zhao et al. [23] reported the irreversi-
bility of certain multimode wrinkles. In this paper, we focus our
attention on a broad spectrum of cyclically irreversible Ruga-
phases by investigating configurational irreversibility of various
Ruga-phase transitions on the PB-RPD. The configurational irre-
versibility of a Ruga-phase during a loading and unloading cycle
implies loss of static equilibrium configuration typically at the
critical points of either unstable crease localization or transition in
the mode of wrinkle-Ruga configuration. We will simply call the
former as “localization irreversibility” and the latter “modal
irreversibility.”

An example of localization irreversibility is Ruga transition of
a smooth free surface or interface to or from a state of a crease tip
under subcritical or critical far-field strain. Here, we define the
critical point as the instance at which the smooth surface snaps to
form a crease tip, e.g., creasing of a flat free surface at the Biot
strain, 0.46. Such a snapping transition of crease formation typi-
cally leads to a load–deformation hysteresis with crease-phase
mode locking in reverse loading. Similar localization irreversibil-
ity is also observed in ridging. In contrast, two different types of
modal irreversibility are observed in Ruga-phase transitions
among the single-, double-, quadruple-, and folding-mode wrin-
kles. One is the rate-independent modal irreversibility caused by
unstable snapping transition of a large-amplitude wrinkle mode to
another large-amplitude wrinkle mode [24]. The other is the rate-
dependent modal irreversibility triggered by inhomogeneous
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viscoelastic deformation of a wrinkle, which is typically promoted
by local pop-out snapping of shallow valleys of the wrinkle. Such
snapping switches the primary period of the wrinkle.

While the nonlinear finite deformation of Ruga-phases sets the
energy landscape for rate-independent bifurcation of static equi-
librium states, various modes of rate-dependent incremental defor-
mation can trigger transitions from a Ruga-phase to various
metastable Ruga-phases. Both types of modal irreversibility are
also observed in ridging and crumpling, and the modal transitions
are in general sensitive to lateral boundary conditions in a finite
size specimen. Regarding rate-dependent irreversibility, while
viscoelasticity effects in wrinkling have been studied extensively
[25–28], viscoelasticity effects in general Ruga evolution have not
been well understood yet. In this paper, we show that viscoelastic-
ity promotes generation of diverse modes of metastable Ruga con-
figurations, which instigates irreversibility of Ruga evolution in
cyclic loading. In turn, it is found that cyclic instability or stabil-
ity, i.e., divergence or shake-down, of Ruga configurations can be
controlled by viscoelasticity. The rate-dependent irreversibility of
Ruga configurations can be a critical behavior of bio-organ
deformation [29–31].

This paper is organized as follows: In Sec. 2, we will highlight
generic irreversible Ruga-phases on the PB-RPD, employing the
finite-element method (FEM) model developed in Part I [10].
Here, a generic irreversible Ruga-phase stands for the phase cre-
ated by rate-independent bifurcation under quasi-static compres-
sion. Throughout this paper, we employ negligible incrementally
linear viscoelastic damping [32,33] by setting the loss tangent
(damping energy/elastic energy) 2� 10�5 to stabilize the incre-
mental equilibrium-configuration search algorithm of FEM for
various bifurcation processes, except for studying specific visco-
elastic effects in Sec. 4. In Sec. 3, irreversible transitions of multi-
mode wrinkle phases are presented in a PB with no mismatch
strain. Then, we will discuss enhancement of Ruga irreversibility
triggered by viscosity effect in multimode wrinkle transitions of
PB with strain mismatch in Sec. 4. Finally, in Sec. 5, possible irre-
versible evolution pathways made by cyclic loadings and their
corresponding morphological features are sorted and discussed.

2 Generic Irreversible Ruga-Phases of the PB

Figure 1(a) shows the generic irreversible Ruga-phases repre-
sented as colored zones on the PB-RPD reported in Part I. While

the wrinkling transition across the boundary T12 in Fig. 1(a) is
reversible during a loading–unloading cycle, irreversibility is
observed in some other transitions; the irreversibility depends
primarily on the compressive strain and the film/substrate moduli
ratio. The zones of various Ruga-phases are denoted by Roman
numerals on the PB-RPD as follows: Flat state (I), primary single-
mode wrinkle [SM1; (II)], wrinkle-setback crease (IIc), global
crease limit (III), double-mode wrinkle [DM1; (IV)], double-
setback crease (IVc), quadruple-mode wrinkle [QM1; (V)],
quadruple-setback crease (Vc), fold-setback crease (Vcf), fold
(VI), and global fold localization limit (VII). The number 1 of
multimode wrinkles, in SM1, DM1, and QM1, signifies the pri-
mary period of the mode being the lowest-energy wrinkle period
of the PB. In the following, metastable multimode wrinkles with
their primary periods being multiples of the lowest-energy wrinkle
period are symbolized as SMi, DMi and QMi, i¼ 2, 3,…. In
specifying the period, we distinguish two different types of Ruga
characteristic period, primary period (P-period) and mode period
(M-period). Their definitions are pictorially illustrated as P-period
of single-mode [SM1; (II)] in Fig. 1(b1), M-period of double-
mode [DM1; (IV)] in Fig. 1(b2), and M-period of quadruple-mode
[QM1; (V)] in Fig. 1(b3). In M-period transitions under large
compressive strain, its P-period remains the same as that of the
primary wrinkle configuration.

As previous studies [21,22] revealed, an individual crease under
cyclic loading makes a smooth free surface (or interface) snap-
jump to and from subcritical crease states. As aforementioned, a
flat free surface under monotonic compressive loading snaps to
crease at the Biot critical strain. In a special case, a surface defect
can cause singular perturbation on the fundamental state and trig-
ger reversible creasing on the flat free surface of a neo-Hookean
half space at a smaller compressive strain, approximately 0.35
[34]. However, in PB, all the crease tips along the curves of T13,
T2c, T4c, and T5cf are under corresponding critical far-field strains
and follow trajectories of subcritical crease states with mode lock-
ing upon unloading. In turn, the transitions across the curves are
all irreversible under cyclic loading. The boundaries of crease
unloading jump are located on the left side of the critical crease
loading jump curves in PB-RPD (not shown in Fig.1(a)). These ir-
reversible transitions make the Ruga-phases, IIc, IVc, Vc, and Vcf
(in green) and those toward (III) (in pink) locally irreversible for
their crease tips. Since the local irreversibility of creasing is

Fig. 1 (a) The primary bilayer RPD: �k is the scaled stiffness ratio and e is the compressive strain–(I) flat phase; (II) SM
wrinkle phase; (III) global crease localization; (IV) DM wrinkle phase; (V) QM wrinkle phase; (VI) fold phase; (VII) global
fold localization; (IIc), (IVc), and (Vc) three setback-crease phases; and (Vcf) crease-fold phase; A is the subcritical
crease strain limit; B is the Biot critical strain of creasing; DR

I is the M-period doubling limit; and QR
I is the M-period

quadrupling limit. The five-colored regions represent irreversible Ruga-phases. (b) Illustration of P-period and M-period
in wrinkling (b1), doubling (b2), and quadrupling (b3).

091004-2 / Vol. 83, SEPTEMBER 2016 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/appliedm

echanics/article-pdf/83/9/091004/6387889/jam
_083_09_091004.pdf by Stanford U

niversity user on 03 Septem
ber 2021



relatively well understood by now, primarily the modal irreversi-
bility of bilayer creasing and multimode wrinkling will be treated
in the rest of this paper.

2.1 Irreversible Ruga-Phases of Cooperative-Mode
Creases. Figure 2(a) shows the variations of the normalized
crease-depth difference, DX, between near-neighbor creasing val-
leys in four P-period as a function of the nominal compressive
strain, e, for �k ¼ 0:59, across the initiation point of global creasing
at e � 0:35 during a loading–unloading cycle. Throughout this
paper, DX is normalized by the critical onset-wrinkling (P-period)
wavelength. Solid curve corresponds to loading and dashed curve
to unloading, exhibiting apparent hysteresis. When the loading
varies, the surface configuration maintains its translational sym-
metry through the SM1 wrinkle phase for ew < e < ed, where ew

and ed represent the critical strains of wrinkling and period dou-
bling, respectively. Once the period doubles, the DM1 wrinkle
steadily grows upon further compression until e reaches the period
quadrupling strain eq, where every four other deep valleys crease,
i.e., eq ¼ ec. Beyond this crease initiation, the periodic crease
depths grow uniformly as shown in Fig. 2(b)- e1l until the com-
pressive strain approaches an apparent bifurcation strain, e1. At
this strain, periodic creases begin to deviate from the translation-
ally symmetric configuration. Upon further compression, DX fol-
lows the upper bifurcation branch (solid line) in Fig. 2(a), until
the compressive strain reaches creasing strain of the substrate,
0.35, beyond which DX grows rapidly, developing global crease
localization. Upon unloading, traces of DX closely follow the

solid branch until the strain reaches a value near 0.35 at which the
system jumps down to the lower parity bifurcation branch (dashed
line).

Figure 2(b) (e2uÞ shows the parity bifurcation configurations
observed during a loading–unloading cycle across the critical 0.35
strain. As shown in the insets of e1l and e2l in Fig. 2(b), symmetry
of the cooperative crease mode is broken beyond e1, and DX
grows rapidly across the 0.35 strain to reach the configuration of
e3l. Upon unloading, variation of the configuration from e3u to e2u

changes the sign of DX in e2u, compared to that of e2l. Then, fur-
ther unloading recovers the periodic configuration of e1u same as
e1l. We believe that this parity bifurcation is primarily caused by
fictitious viscosity that we employed in our FEM model to stabi-
lize convergence of the numerical solution. In the limit of no vis-
cosity, the two traces may merge and transit vertically at the
compressive strain of 0.35.

Regarding the initial crease formation, the critical strain, ec,
strongly depends on the critical wavenumber �k in the range of
0:40 < �k < 1:44; on the other hand, the transition of the coopera-
tive film-crease mode toward the global crease localization of the
substrate is consistently triggered at a fixed strain value of e �
0:35 for 0:40 < �k < 1:20. Starting from the homogeneous half
space (�k ¼ 1:44), for 1:20 < �k < 1:44, the flat surface of the film
develops instantaneous creases through transition T13. For
0:40 < �k < 1:20, an SM1 wrinkle develops periodic local setback
creases on the free surface of the film in every four other wrinkle
valleys. The setback creasing transitions are denoted as wrinkle-
setback crease across T2c for 1:00 < �k < 1:2, double-setback

Fig. 2 Cooperative creasing irreversibility for �k 5 0:59 ð R 5 15): (a) DX is the crease-tip
depth difference normalized by critical onset-wrinkling wavelength l; h is the film thick-
ness; eW 5 0:08, eD 5 0:19, and eC 5 0:22 are the critical strains for wrinkling, doubling,
and creasing modal bifurcations; e1 5 0:24, e2 5 0:35, and e3 5 0:36 are the three particular
strains chosen for comparison of loading and unloading. (b) Contour plots of loading
and unloading FEM results for e1, e2, and e3.
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crease across T4c for (0:60 < �k < 1:00), quadruple-setback crease
across T5c, and the fold-setback crease generated by further load-
ing across T5cf for 0:40 < �k < 0:60. All these transitions lead to
uniform stable growth of periodic film crease tips up to 0.35 com-
pressive strain for 0:40 < �k < 1:20, crossing the green zone in
Fig. 1(a), followed by global localization of substrate creasing
beyond the 0.35 strain (pink zone in Fig. 1(a)). Our FEM simula-
tions reveal that the periodic film creasing occurs through unstable
snap jump at a critical strain during loading cycle, while the
crease phase locks in its mode across the critical strain during
unloading cycle. Then, the periodic crease tip configuration main-
tains its mode down to a subcritical strain at which the periodic
crease phase snaps back to the wrinkle phase [21,22,35]. In con-
trast, the global creasing exhibits a different irreversibility
phenomenon—modal instability in growth or recession of the per-
iodic crease tips. The modal irreversibility of creasing is often
amplified by viscosity effect on the interactions among the film
creases and the substrate crease.

2.2 Irreversible Ruga-Phases of Multimode Wrinkles.
Besides the above-discussed creasing irreversibility, we have also
investigated irreversibility of multimode wrinkling transitions: M-
period doubling (II–IV) through transition T24; M-period quadru-
pling (IV–V) through T45; folding (V–VI) through T56; and fold
localization (VI–VII). Our FEM results show that reversibility of
the various modes (DM1, QM1, and F) depends mainly on the
modulus ratio of the bilayer system, R ð¼ lf =lsÞ. Therefore, we
have run FEM simulations of the loading–unloading cycle for the
whole range, 0 < �k < 0:40 (1 > R > 45Þ, within which M-
period multiplications occur.

Our simulations reveal two distinct characteristic wavenum-

bers, �k ¼ 0:29 ðR ¼ 120Þ and �k ¼ 0:17 ð R ¼ 600Þ denoted as

QR
I and DR

I , respectively, in Fig. 1(a). Within 0:29 < �k < 0:40,

i.e., above QR
I ; the system undergoes reversible transitions from

flat state (I) to fold (VI) through multimode wrinkling phases. We
only observe pronounced rate-dependent irreversibility when fold-
ing localizes in (VII), which is triggered by creasing of the sub-
strate. In other words, transitions from SM1, DM1, QM1, and F
within this characteristic wavenumber region are all reversible
with no hysteresis. This particular reversible corridor of 0:29

< �k < 0:40 and 0 < e < 0:30 allows controllability of the fold
patterns. This feature is expected to be technologically very attrac-
tive for various applications, such as stretchable electronics and

soft robotics [5,36]. For 0:17 < �k < 0:29, M-period doubling is
reversible, while M-period quadrupling and folding processes are

irreversible. For very stiff film bilayers, �k < 0:17, the transitions
of M-period multiplication, II! IV! V! VI! VII, are all
irreversible, which engenders hysteresis in Ruga evolution under
cyclic loading, with mode locking in unloading cycle. The irre-
versible multimode wrinkle phases are marked in blue, brown,
and purple on the PB-RPD in Fig. 1(a). In Secs. 3, 4, and 5,
detailed analyses of the irreversibility and their implications on
the formation and evolution of various modes are presented.

3 Irreversible Transitions of Multimode Wrinkles of

PB Without Strain Mismatch

Transitions between various pairs of Ruga modes occur through
symmetry breaking of height variations in the wrinkle configura-
tion. Therefore, we have traced the evolution of the height differ-
ences between a wrinkle valley and its two adjacent valleys,
denoted by DXl and DXs, respectively, as shown in the insets of
Fig. 3. Here, the superscripts l and s denote large and small,
respectively. Figure 3(a) shows traces of DXl and DXs, during a
loading–unloading cycle for a bilayer system with the stiffness
ratio R¼ 90 (�k ¼ 0:32). During loading, the SM1 wrinkle symme-
try is conserved until the critical strain for period doubling is
attained at e � 0:18, at which the SM1 symmetry is broken and a
DM1 configuration emerges. Then, another higher-mode

bifurcation occurs at a strain (e � 0:26) at which the DM1 bifur-
cates into a QM1. As shown in Fig. 3(a), both traces of DXl and
DXs coincide for loading (solid line) and unloading (dashed line),
indicating reversibility of period doubling and quadrupling for the
bilayer system with R¼ 90. However, for a bilayer system with a
high stiffness ratio, R¼ 3000 (�k ¼ 0:10), the traces of DXl and
DXs in Fig. 3(b) do not coincide for loading (solid line) and
unloading (dashed line), showing hysteresis of the Ruga configu-
ration in the cyclic loading. This configurational irreversibility is
clearly shown in Fig. 3(b) with the simulation frames taken at the
same strains, e1;…; e4, of loading and unloading. Although the
small fictitious viscosity employed in our FEM model to stabilize
convergence obscures the sharp jumps at the doubling and the
quadrupling points of the mode, the distinct hysteresis loops are
evident for a highly stiff-film PB without strain mismatch. The
results indicate that the unloading transitions undergo mode lock-
ing as shown in the frames captured at particular strains e1, e2, e3,
and e4. Now, questions arise: Does irreversibility always manifest
itself through mode locking or it may lead to excitement of other
modes that are not accessible during loading?

4 Primary-Period Switching Jumps in Cyclic Ruga

Evolution of PB With Strain Mismatch

In Secs. 2 and 3, we showed that the synergistic effects of vis-
cosity and large nonlinear deformation can substantially enhance
irreversibility of Ruga-mode transitions in PB without strain mis-
match. Here, in this section, we present the excitation of P-period
switching jumps, triggered by minute increase in viscosity, that
further enhances irreversibility in cyclic Ruga evolution of PB
with strain mismatch. In our simulations, the strain mismatch is
implemented by prestretching the substrate and subsequently
attaching a stress-free layer on the surface of the substrate. Upon
releasing the prestretch of the substrate, the film is compressed to
make the flat state unstable and SM1 wrinkle mode emerges. The
FEM-plot insets in Figs. 4(a1) and 4(b1) show typical multimode
wrinkle configurations, DM1 and QM1, observed during loading
cycle of a bilayer system with the stiffness ratio R¼ 104

(�k ¼ 0:07) and the substrate prestretch ratio kps¼ 1.4. In the
graphs of Fig. 4, the horizontal axis represents nominal compres-
sive strain of the film, measured with respect to the prestretched
configuration of the substrate. The vertical axis DX denotes the
depth difference between the neighboring shallow and deep val-
leys,normalized by the P-period wavelength. If the prestretch for
the strain mismatch was greater than approximately 1.5 for the
stiff film, ridging instability would trigger different types of irre-
versible Ruga evolution such as order–disorder transitions in ridg-
ing and crumpling [37,38].

During compressive loading on the film, the bilayer system
develops Ruga-phase evolution (SM1! DM1! QM1! F) sim-
ilar to the case of high stiffness ratio PB with no strain mismatch,
as shown with solid curves in Figs. 4(a1) and 4(b1). However, the
critical strains for period doubling and quadrupling, 0.34 and
0.44, are, respectively, larger than their corresponding strains,
0.18 and 0.26, for the same stiffness-ratio bilayer system without
strain mismatch. For this stiff film, the transitions from single-
mode (SM1) to double-mode (DM1) and from double-mode
(DM1) to quadruple-mode (QM1) both exhibit unstable bifurca-
tion of snap buckling, similar to those of the same stiffness-ratio
bilayer system with no strain mismatch. However, unlike the latter
without strain mismatch which makes mode locking during
unloading cycle, the former with strain mismatch exhibits
P-period switching jumps promoted by viscosity upon unloading
as described below in detail. In order to examine the sensitivity of
unloading bifurcation on viscosity, in Fig. 4, we present unloading
Ruga-phase evolution stimulated by a minute but not negligible
viscoelastic loss tangent of 2� 10�4.

The dashed lines in Fig. 4(a1) show traces of DX transitions,
while the compressive strain of the film is unloaded from a state of
DM1 at a strain very close to the mode-doubling critical strain.
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The Ruga configuration reversibly follows the (green) solid curve
between the critical points of mode doubling and mode quadru-
pling, until it is unloaded to a strain within 1% from the mode-
doubling critical strain, as marked with * on the solid curve in Fig.
4(a1). At this point, it starts to make a snap buckling transition to a
completely new mode, SM2, which is a SM but it has its period
twice the period of SM1. The P point in Fig. 4(a1) denotes the
moment of local film buckling at which the shallow valley transits
to a peak. At the transition point P, shallow valleys turn flat to
have zero curvature locally. Subsequently, they bulge out and
become peaks. The unloading process after P point is depicted in
the dotted box, where DX represents the depth difference between
the deep valley and the newly formed peak of the SM2 mode. Fig-
ure 4(a2) shows the variation of the total strain energy of the PB
along the loading/unloading process near the mode-doubling
point, which corresponds to the gray zone in Fig. 4(a1). Here, the
total strain energy is denoted by W and the strain energy at the
starting point (o on the curve) of P-period switching by W(o).
When the prestretch of the substrate, kps ¼ 1:4; is fully relaxed,
the film reaches its compressive strain at e � 0:286: Therefore, the
substrate is compressed, and the total strain energy increases
monotonically beyond e � 0:286. Surprisingly, it increases
smoothly along the blue curve in the range of 0:32 � e � 0:355 in
Fig. 4(a2) despite the transition from SM1 to DM1. When the PB
is unloaded from DM1, the Ruga mode and the corresponding
strain energy begin to deviate, at e � 0:353 (marked by a black
circle), from those of the solid blue curve to those of the dashed
black curve in Fig. 4(a2), making P-period switching to SM2. As
the shallow valley pops out at P, the dashed energy curve exhibits
inflexion toward that of SM2. The energy level of SM2 is clearly
higher than that of SM1, indicating that SM2 is a metastable state.

Similarly, in unloading the system from QM1, shown in Fig.
4(b1), the system experiences a snap buckling transition from

QM1 to DM2 as the strain approaches the critical quadrupling
strain within 1%, Gþ and Rþ. The change in Ruga configuration
at the P point in Fig. 4(b1) is similar to that in Fig. 4(a1); shal-
low valleys transit to peaks. Upon further unloading, another
transition from DM2 to SM2 is observed. Figure 4(b2) shows
variation of the strain energy along the loading/unloading process
near the mode-quadrupling point within the strain range of the
gray zone and the dashed-line box in Fig. 4(b1). The dashed-line
energy variation curve shows that DM2 is indeed a metastable
state. The FEM simulation configurations of the snap buckling
transitions (SM1 ! DM1 ! QM1 ! DM2) are exhibited in the
frames (c1–c4) of Fig. 4(c). This unloading bifurcation process
of QM1 ! DM2 is made in competition between the local bifur-
cation process of shallow valley pop-ups, QM1! DM2, and the
modal bifurcation process of the long-range interaction mode,
QM1! DM1. In this competition, a small fluctuation of the
configuration evolution caused by material inhomogeneity or vis-
cosity can bias the bifurcation. In particular, it is found that ma-
terial viscosity plays a significant role to bias the bifurcation
toward QM1! DM2. Once QM1 bifurcates to DM2, the amount
of unloading strain to reach SM2 is much smaller than the differ-
ence between the critical strains of SM1! DM1 and DM1!
QM1 transitions. Then, upon further unloading, SM2 maintains
its mode in a metastable state. Although SM2 is a higher energy
mode than SM1, the energy barrier from SM2 to SM1 by dou-
bling the frequency is not negligible and the SM2 sustains the
mode as a metastable state. Direct doubling of the frequency
from SM2 to SM1 for every crust has very high activation
energy barrier, while frequency doubling through snaky adjust-
ment by propagation of wrinklons [39–41] is considered to have
lower energy barrier. However, the latter energy barrier is con-
sidered to depend on the lateral boundary conditions and the
specimen size.

Fig. 3 Reversibility of PB without strain mismatch: DX is the amplitude difference normalized by critical onset-wrinkling wave-
length, and e is the compressive strain. (a) Bilayer with modulus ratio R 5 90 (�k 5 0:32): The traces coincide during the
loading–unloading cycle indicating reversibility of the Ruga modes. (b) Bilayer with modulus ratio R 5 3000 (�k 5 0:10): Both
DM2 and QM2 exhibit hysteretic behavior during unloading with mode locking; the FEM contour plots show the Ruga-phases
under four specific compressive strains e1, e2, e3, and e4 during loading and unloading.
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5 Enhancements in Cyclic Ruga Irreversibility:

Causes and Consequences

We discussed in Sec. 3 that mode locking in reverse loading
near a critical point can instigate Ruga irreversibility, and in
Sec. 4 that P-period switching jumps can dramatically boost cyclic
irreversibility of Ruga evolution. In this section, we examine how
viscosity triggers P-period switching jumps to enhance the cyclic
irreversibility, and what are the consequences of the mode-
locking and the P-period switching mechanisms on attaining
cyclic stability of Ruga configuration hysteresis.

5.1 Viscosity Effect on Primary-Period Switching Jumps
in Cyclic Ruga Evolution. As discussed in Secs. 3 and 4, differ-
ent bifurcation mechanisms such as mode-locking and P-period
switching can compete near a certain critical strain during unload-
ing cycle. Bifurcation of an autonomous local deformation mode,
e.g., local curvature flipping of shallow wrinkle valleys, can occur
while a transition is made in a long-range interaction cooperative
mode, e.g., DM or QM, etc. Then, such an autonomous local
mode bifurcation can substantially enhance irreversibility of coop-
erative Ruga modes in cyclic loading of PB with strain mismatch.
In particular, material viscosity can delay relative evolution speed

Fig. 4 P-period switching irreversibility of PB with strain mismatch (R 5 104 and prestretch ratio kps 5 1.4) during loading/
unloading cycle: DX is the amplitude difference normalized by critical onset-wrinkling wavelength l; e is the compressive strain;
DXs and DXl are the normalized amplitude difference between the shallow wrinkle valley and two neighboring deep valleys; solid
curves represent loading (DM1 fi QM1 fi F); dashed curves represent unloading; and P is the critical point, where shallow wrinkle
valley becomes flat. (a1) Unloading from M-period doubling (DM1 fi SM2). (a2) Normalized strain energy (W/W(o)) variation along a
loading/unloading process near the mode-doubling point. (b1) Unloading from M-period quadrupling (QM1 fi DM2 fi SM2): G1

and R1 are the unloading starting points of two quadrupling bifurcations, G2 and R2 are the points of excited-mode DM2, and
black star represents the configuration of excited-mode SM2. (b2) Normalized strain energy (W/Wo) variation along a loading/
unloading process near the mode-quadrupling point. (c) FEM contour plots of Ruga evolution during a loading–unloading cycle:
(c1) and (c3) represent the primary modes through transition (SM1 fi DM1 fi QM1) and (c4) represents excited-mode DM2 during
unloading by snap-buckling from QM1.
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of a certain mode to trigger an unexpected autonomous mode
which would not be activated if the materials were purely elastic.
Here, we show that such an autonomous mode bifurcation can trip
cyclic instability of Ruga evolution, leading to cyclic divergence
or cyclic shake-down of Ruga modes.

Figures 5(a) and 5(b), respectively, show nearly reversible
unloading and loading states of surface velocity V and configura-
tion X of a DM1 Ruga surface of a low viscosity system with
2� 10�5 loss tangent, while Figs. 5(c)–5(e) display those of irre-
versible unloading process in a relatively high viscosity system
with 2� 10�4 loss tangent. Here, the surface velocity V is
defined as change in vertical surface displacement normalized by
the P-period, with respect to global strain increment. The configu-
rational deformation amplitude X is also normalized by the
P-period. As illustrated in Fig. 5(a) for unloading of the low vis-
cosity system, the shallow valley is moving upward while the
neighboring deep valleys are moving downward, exactly opposite
to the loading case (Fig. 5(b)). For the low viscosity system, mate-
rials are considered to experience nearly reversible deformation.
In contrast, the unloading surface velocities shown in Figs.
5(c)–5(e) for the high viscosity system are out-of-phase with
respect to the velocity shown in Fig. 5(a). The criticality of the ve-
locity bifurcation is noticed in Fig. 5(d); the velocity of the

shallow-valley surface is just reversed to that in Fig. 5(a). Figures
5(e) and 5(f) show that upon further unloading the shallow valley
snaps out while its adjacent valleys reverse their motion albeit at
smaller speed. This local snapping is believed to be caused by vis-
cosity effect for different deformation rates along the corrugated
surface.

5.2 Cyclic Stability of Ruga Configuration Hysteresis and
Coexistence of Ruga-Phases. Figure 6 collectively shows the
schematic configurations of various Ruga-phases that can appear
on the surface of a PB system under repeated cycles of loading
and unloading. The three major PB Ruga localization types are
illustrated in Fig. 6(a)—the crease, the fold, and the ridge local-
izations. The PB crease localization is a global localization. It
commences at the Biot strain (0.46) on a smooth surface of a
homogeneous incompressible neo-Hookean half space, and at
0.35 strain for the half space with a surface imperfection. Such an
imperfection includes single or multilayer thin films, graded mod-
ulus distribution, surface singularity, and defects. The PB fold
localization is induced by substrate crease localization, but the
onset strain widely varies depending on self-contact conditions of
local folds elicited by the folding process. For a PB system with

Fig. 5 Vertical surface velocity of P-period switching: Upper curves of (a), (b), and (d)–(f) rep-
resent the velocity profile of a selected range marked by dashed line box in (c), and lower
curves correspond to the surface profiles (X normalized by critical onset-wrinkling wave-
length l). (a) Unloading from QM1 to current DM1 with small viscosity. (b) Loading to current
DM1: (d)–(f) unloading from QM1 to SM2 with viscoelastic loss tangent of 231024.

Journal of Applied Mechanics SEPTEMBER 2016, Vol. 83 / 091004-7

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/appliedm

echanics/article-pdf/83/9/091004/6387889/jam
_083_09_091004.pdf by Stanford U

niversity user on 03 Septem
ber 2021



0 < �k < 0:60, the surface layer generates periodic local folds at
every fourth wrinkle valley, but the critical strain of global fold
localization varies depending on smoothness of the local fold
fronts. (i) When 0:40 < �k < 0:60, each local fold generates a
crease tip on its advancing front. The crease tip tends to stabilize
cooperative parallel growth of the local crease tips until the sub-
strate globally creases at the compressive strain of 0.35. (ii) When
0 < �k < 0:40, the local folds grow with a smooth fold front,
which easily induce instability with high imperfection sensitivity
in cooperative growth of the local folds. Such instability can occur
at any compressive strain between the local-folding and the Biot
strains. These two kinds of folding localizations—crease tip
guided localization and smooth fold localization, have different
characteristics in configurational energetics. Crease tips on a fold
front make lateral configurational sliding of the tips difficult, in
contrast to smooth fold fronts. Easy lateral configurational sliding
of smooth fold fronts causes high imperfection sensitivity in trig-
gering global fold localization and thus large uncertainty in the
critical strain of global fold localization. The PB ridge localiza-
tion is a growth-limiting localization which sprouts out instead of
sinking into the substrate. It is usually caused by strain mismatch
between the film and the substrate, and growth of ridge height is
intrinsically limited.

For a PB system of �k < 0:40 without strain mismatch, no crease
manifests on the film surface, and the Ruga-phase evolves along
the pathway (SM1! DM1! QM1) as shown in the bottom row
of Fig. 6(b). For PBs with negligible viscosity, unloading follows
the bottom row configurations (QM1 ! DM1 ! SM1) either
with or without hysteresis, depending on the stiffness ratio. How-
ever, for an appreciably viscoelastic PB system of �k < 0:40 with
strain mismatch, P-period switching makes the ground modes,
DM1 and QM1 set off to SM2 and DM2, respectively, during
unloading. Various possible P-period switching transitions are
illustrated in Fig. 6(b). We denote these modes by SMi, DMi, and
QMi, i ¼ 1; 2; 3;…; for which modal translational symmetry
holds in every single, double, and quadruple primary period(s).
The index, i, stands for the ratio of the primary period of the mode
with respect to the primary period of the ground mode. For exam-
ple, the set-off modes SM2, DM2, and QM2 have the same geo-
metric mode configurations as the ground modes SM1, DM1, and
QM1, correspondingly; however, the primary period is doubled.
When SM2 generated by P-period switching of DM1in the

unloading cycle is reloaded by compression, the mode will bifur-
cate to DM2 instead of returning back to DM1. The energy barrier
is too high to directly flip the convex curvature of the SM1 wrin-
kle peak to a concave curvature of a wrinkle valley. Therefore, it
is likely that if the viscosity is properly matched for the loading
rate, the wrinkle modes would diverge under cyclic loading, fol-
lowing SM1 ! DM1 ! SM2 ! DM2 ! SM4 ! DM4. This
mechanism can excite the ground mode (SM1, DM1, and QM1)
to a higher energy modes (SMi, DMi, and QMi, i¼ 2 or 4,…) by
tuning the loading rate for a given viscosity.

As discussed above, if the viscosity and the loading rate are
properly matched, cyclic loading can make the Ruga-phase
diverge to those of high-energy metastable configurations or
shake-down to a certain energy-level metastable configuration.
Furthermore, this mechanism can generate variety of coexistent
Ruga-phases of PB with spatial imperfections in its property,
geometry, or loading conditions.

6 Conclusion

We have revisited the PB-RPD [10] to investigate configura-
tional reversibility of various Ruga-phases under cyclic loading.
Our extensive finite-element simulations of single
loading–unloading cycle reveal that many metastable Ruga states
exist, and many phases (SM1, DM1, QM1, and F) on PB-RPD are
irreversible in their configurational variations under the cyclic
loading, despite the system is locally elastic everywhere. It is also
found that the cyclic irreversibility is enhanced by initial film/
substrate strain mismatch and material viscosity. The cyclic irre-
versibility is classifiable, in large, by localization irreversibility
and modal irreversibility.

The localization irreversibility is found to be associated with
unstable creasing of either the film surface or the substrate. The
film surface creasing typically emerges as periodic setback creas-
ing of wrinkle or fold valleys within a range of the normalized
critical wavenumber, 0:40 � �k � 1:2, while the substrate creasing
induces global localization. When the setback creases globally
localize later, sharp tips of the periodic film creases stabilize uni-
form cooperative parallel growth of the tips up to the subcritical
creasing limit strain, 0.35, of the neo-Hookean half space. On the
other hand, easy lateral configurational sliding of smooth fold val-
leys erratically prompts instability in the cooperative growth of

Fig. 6 Schematics of surface localization and Ruga modes of a neo-Hookean bilayer system
subject to a loading–unloading cycle: (a) Three types of global Ruga localization—crease,
fold, and ridge. (b) Mode transitions during loading–unloading cycle: Solid and dashed arrows
represent loading and unloading processes, bottom row represents Ruga evolution pathway
for mode locking irreversibility [(I) flat phase, (II) primary single-mode wrinkle phase SM1, (IV)
primary double-mode wrinkle phase DM1, (V) primary quadruple-mode wrinkle phase QM1],
{(SMi), (DMi), and (QMi), i 5 2,4} represents the excited-modes observed in P-period switching
during cyclic loading, and dashed boxes represent the predicted excited-modes.
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the fold fronts, depending on the self-contact friction of the fold
surfaces. Such erratic instability elicits large uncertainty in deter-
mining the starting strain of fold localization.

On PB-RPD of �k < 0:40, the film surface does not crease, and
period multiplications and folding of a wrinkle are found reversi-
ble in the corridor of ð 0:29 < �k < 0:40; 0 < e < 0:30Þ, which is
considered useful for various technological applications. Modal
irreversibility is observed for 0 < �k < 0:29; the critical �k of irre-
versible DM1 and QM1 period multiplications is determined as
DR

I ð�k ¼ 0:17; R ¼ 600Þ and QR
I ð�k ¼ 0:29; R ¼ 120Þ below

which DM1 mode and QM1 mode become irreversible, respec-
tively. Mode locking during unloading is found to be the main
irreversibility characteristics of the PB system without film/
substrate strain mismatch. In contrast, a PB of high film/substrate
ratio (e.g., R ¼ 105Þ with sufficient strain mismatch (e.g., eps

¼ 0:4Þ and viscosity (e.g., loss tangent ¼ 2� 10�4) experiences
P-period switching from DM1 and QM1 to SM2 and DM2,
respectively, during unloading. It is found that material viscosity
inhibits relative deformation rate of deep valleys of multimode
wrinkles to that of shallow valleys, and in turn, it promotes flip-
ping the curvature of shallow valleys during the unloading cycle.
Such flipping triggers P-period switching which provides a jump-
ing mechanism of a multimode wrinkle toward a higher energy
metastable wrinkle configuration. Here, we expect that excitation
of various P-period switching can control stability of cyclic multi-
mode configuration hysteresis—cyclic divergence or shake-down.
The results may inspire designing new systems with unprece-
dented surface modes and lead to a new way for period control of
various Ruga-phases.
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