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Additional derivation process of the expressions in theoretical analysis 

To obtain the expression of Eq. 7a and 7b in the main text, we first insert Eq. 6a into Eq. 5b and arrive at 
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Inserting Eq. 6c into Eq. 5b, the following equation is obtained 
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Inserting the trigonometric relation 2
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   and Eq. S2 into Eq. S1, we arrive at 
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We thus reproduce Eq. 7b in the main text. With Eq. 6a, the left-hand side of Eq. 5a can be further derived 

as 
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Based on the first-order approximation, the second term on the right-hand side of Eq. S4 can be ignored 

compared with the first term. Therefore, Eq. 5a can be approximately rewritten as 
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Inserting the trigonometric relation 2
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   and Eq. S2 into Eq. S5, we arrive at  
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We thus reproduce Eq. 7a in the main text. At the free end of the cantilever beam (Fig. 2c, 0s  ), there is 

no bending moment and thus the first derivation of φ at this point is zero (  ' 0 0s   ). While for the 

clamped end (Fig. 2c, s l ), both the angular displacement and deflection displacement are zero. Therefore, 
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we have the boundaries   0s l    and   0s l   . To solve Eq. 7a and 7b, relations 
flap

A W t ,

3 / 12flapI W t , and  flapW W  are used (The definitions of these variables can be found in the main text). 

After solving the equations, we can obtain the deflection of the flap tip tip , the rotation angle of the flap 

end tip , and the horizontal displacement of the center point at the flap end tipu , for different levels of 

pressure. To further obtain the expression of d , we can use the geometry relations that relate the deformed 

configuration of the flap to its initial undeformed configuration. As shown in Figure S1, the line AB  in the 

initial undeformed configuration becomes ' 'AB  after deformation. According to the calculated deflection 

results, the length of AC  and 'AC  is tip  and tipu , respectively, while the angle of ⦟ ' 'EAB  is tip . 

Therefore, the length of BD  and 'BD shown in Figure S1 can be easily computed as cos
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, respectively. The length of 'BB can be obtained based on the length of BD  and 'BD  

through Pythagorean theorem. Following the simple geometry relations marked in the red line in Figure S1, 

the expression of d  can be written as  
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where   is the tilt angle of the flap relative to the top channel wall, 
0d  is the initial gap between the flap 

tip and the bottom channel wall, t  is the thickness of the flap, respectively. 

 

 

 



4 
 

Figure S1. Schematic graph of the geometry relations that relate the deformed configuration of the flap to 

its initial undeformed configuration.  

 

Geometry and fabrication of the valves 

To manufacture the valves, we build a digit light processing printing platform as schematically shown in 

Figure S2a. It is mainly composed of an ultraviolet (UV) light projector and a linear translation stage. The 

operation of the platform is controlled by a MATLAB script. In Figure S2b, we show the geometry of a 

typical valve used for characterizing the flow rate-pressure response. The length of the main channel is 22 

mm. Both the width and height of the channel is 1 mm. To connect the channel into a testing system, we 

also add a cylindrical inlet and outlet on the two sides of the channel. Both the length and diameter of the 

inlet and outlet is 4 mm.  

 

Figure S2. Geometry and fabrication of the valves. (a) Schematic graph of the printing platform. (b) 

Geometry of the valve used for charactering the flow rate-pressure response. Number unit: mm. 

 

Mechanical properties of the material  

For modeling the mechanical behavior of the flap in simulations, a neo-Hookean material model is used. In 

order to determine the material parameters in the model, tensile tests are performed and the stress-strain 

curve for the material is extracted in Figure S3. In terms of principal stretches, the strain energy density 

function for an incompressible neo-Hookean material is given by 

  2 2 2

1 1 2 3 3W C       ; 
1 2 3 1    (S8) 

where 
i  ( 1,2,3i  ) are the principal stretches and 

1C  is a material-specific parameter. The expressions 

for the Cauchy stress differences is given as  
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In the case of simple tension, 
33 0   and 2 3 1 /    . Eq. S9 can be written as  

 
2

11 1

1
2C 



 
  

 
 (S10) 

Figure S3 presents the best fitting model curve of Eq. S10 with parameter values 
1 0.3167C  J/m3. 

 

Figure S3. Neo-Hookean constitutive model stress-strain curve against the corresponding experimental 

data. 

 

Table S1. List of parameters used in the theoretical and numerical models 

 

 

 

 


