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A B S T R A C T   

Ring origami is a new strategy to design bistable foldable/deployable structures by assembling multiple rings 
with the same geometry. The successful folding of ring origami assembly leverages the snap-folding capability of 
single rings. It is thus important to model the snap-folding of ring-shaped structures for the rational design of ring 
origami with good foldability, stability and high areal packing ratio. This paper studies the folding mechanics of 
differently shaped rings (circular, elliptical, rounded rectangular and rounded triangular rings) under twisting 
loads by developing theoretical and three-dimensional finite element analysis (FEA) models. The rod model is re- 
formulated for different ring geometries as two-point boundary value problem systems, which are then solved 
through numerical continuation, allowing one to capture complex equilibrium paths with multiple fold points. 
The rod model, verified by FEA simulations and experiments, can accurately, quantitatively capture the snap- 
folding behaviors for rings of different geometries. Using the rod model, we analyze the folding modes in 
terms of foldability, stability and snapping type. Phase diagrams of folding modes are then constructed with 
respect to geometric parameters for the ring profile and cross-section for differently shaped rings. Diagrams of 
areal packing ratios are obtained using the reduced planar rod model. This work provides comprehensive me-
chanics insights into the ring folding through twisting and can guide future ring origami design.   

1. Introduction 

Origami-inspired reconfigurable structures that can be reversibly 
folded and deployed have enabled a variety of applications such as 
deployable structures (Zirbel et al., 2013; Melancon et al., 2021), 
reconfigurable surfaces (Dudte et al., 2016; Callens and Zadpoor, 2018), 
robotic arms (Martinez et al., 2012; Li et al., 2017; Wu et al., 2021), 
mechanical metamaterials (Silverberg et al., 2014; Filipov et al., 2015; 
Zhai et al., 2018; Nauroze et al., 2018) and flexible electronics (Novelino 
et al., 2020). One important strategy to achieve stable deploying/folding 
is to exploit mechanical instabilities (e.g., buckling) of slender structures 
(e.g., thin shells and slender rods) (Shim et al., 2012; Nasto et al., 2013; 
Stein-Montalvo et al., 2019; Bende et al., 2015; Liu et al., 2016; Shan 
et al., 2015), which enable the shape transformation between multiple 
stable equilibrium configurations in a self-guided manner with high 
tolerance of loading errors. The ring-like structures, a type of closed- 
loop rods, exhibit various intriguing mechanical instabilities under 
external loads (Yoshiaki et al., 1992) or intrinsic stimuli (Audoly and 

Seffen, 2015; Bae et al., 2014; Mouthuy et al., 2012; Manning and 
Hoffman, 2001; Goriely and Tabor, 1997; Moulton et al., 2013; Dias and 
Audoly, 2014; Dias and Santangelo, 2012), showing great capabilities of 
shape reconfiguration. For instance, single circular rings with narrow 
cross-sections upon simple moment loadings (twisting or bending) can 
trigger the snap-through folding into stable three-covered shapes 
(Yoshiaki et al., 1992), exhibiting robust self-guided folding path, 
geometrically precise folded state and large area reduction. Such 
behavior has been utilized in daily life for compact storage and pop-up 
deploying, such as tents and car sunshades. It should be noted that 
similar deformations and folding behaviors of single ring-like structures 
can also be triggered by intrinsic planar curvature (Audoly and Seffen, 
2015; Bae et al., 2014; Mouthuy et al., 2012; Manning and Hoffman, 
2001), filamentary growth (Moulton et al., 2013), and curved paper 
folding (Dias and Audoly, 2014; Dias and Santangelo, 2012). It is also 
worth noting that the intrinsic twist in single or multi-covered ring 
structures leads to other instability modes, such as writhing and torus 
knots (Goriely and Tabor, 1997). 
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Motivated by the folding capability of ring-like structures, Wu et al. 
(Wu et al., 2021) recently presented a new strategy, ring origami, for 
constructing foldable/deployable structures, where a 2D/3D structure is 
assembled by multiple rings and can be reversibly folded and deployed 
through buckling to achieve large area or volume change. The efficient 
assembling in terms of close-packing extent relies on the usage of 
differently shaped rings. An example is shown in Fig. 1 and Supple-
mentary Video 1, where an assembly of six elliptical rings is first stacked 
into a single-ring configuration, which is folded into a stable three- 
covered structure with greatly reduced volume/area upon simple 
twisting loads. The snap-folding characteristic leads to the self-guided, 
robust folding path and geometrically precise folded state. The bi- 
stability characteristic also leads to reliable folding-deploying revers-
ibility. However, the ring assemblies are not always foldable or stable at 
the folded state. The successful folding of the assembly relies strongly on 
the snap-folding of elementary building units (i.e., single rings), which is 
governed by the ring geometry (e.g., overall profile and cross-section). 
The ring geometry also impacts the areal packing ratio due to the 
snap-folding. These imply the importance of the rational design of ge-
ometries for ring origami and thus motivate the need of theoretically 
modeling the snap-folding mechanics of ring-shaped structures, in 
particular their foldability and stability. Although finite element anal-
ysis (FEA) models have been used to study the folding behaviors of 
different rings (Wu et al., 2021), the high computational cost of three- 
dimensional (3D) FEA makes it difficult to acquire comprehensive in-
sights into the ring folding mechanics, e.g., to construct complete phase 
diagrams for foldability, stability and areal packing ratio. In addition, 
3D FEA in the previous study is not sufficient to capture different 
snapping instabilities (e.g., snap-back) (Crisfield, 1981; Crisfield, 1986), 
thus providing relatively limited mechanics insights. Given the high 
slenderness of ring structures, reduced-order theories (e.g., rod model) 
are desirable to further understand the snap-folding mechanics, identify 
key parameters controlling the ring folding, and guide the design of ring 
origami.   

The classical Kirchhoff rod theory (Love, 2013; O’Reilly, 2017), 
which can describe the geometrically nonlinear deformations of rod 
structures in 3D space, has been widely used to model mechanical be-
haviors of rod-like or ring-like objects (Yoshiaki et al., 1992; Audoly and 
Seffen, 2015; Bae et al., 2014; Mouthuy et al., 2012; Manning and 
Hoffman, 2001; Goriely and Tabor, 1997; Moulton et al., 2013; Dias and 

Audoly, 2014; Dias and Santangelo, 2012). In addition, rod-based 
structures with other geometries or topologies exhibit abundant me-
chanical instabilities under various loading conditions, such as perver-
sion in telephone cords or tendrils (Goriely and Tabor, 1998) and coiling 
of DNA molecules (Fuller, 1978). Examples of studies utilizing rod 
models for these intriguing behaviors include those on various types of 
buckling behaviors under different mechanical loads (O’Reilly, 2017; 
Healey and Mehta, 2005; Sano and Wada, 2019; Yu and Hanna, 2019), 
coiling or perversion under bi-strip strain mismatch or intrinsic curva-
tures (Goriely and Tabor, 1998; McMillen, 2002; Haijun and Zhong-can, 
1998; Huang et al., 2012; Liu et al., 2014; Wang et al., 2020), writhing 
under intrinsic twist (Goriely and Tabor, 2000; Goriely et al., 2001), 

morphogenesis due to filamentary growth (Moulton et al., 2013; Les-
sinnes et al., 2017; Moulton et al., 2020), shapes of Mobius strips 
(Mahadevan and Keller, 1993; Moore and Healey, 2019), mechanics of 
knots (Jawed et al., 2015; Patil et al., 2020); hard-magnetic elastica 
(Wang et al., 2020; Wang et al., 2021), and multi-rod structures such as 
lattices (Weeger et al., 2018), fabrics (Weeger et al., 2017), gridshells 
(Baek and Reis, 2019; Baek et al., 2018) and bigons (Yu et al., 2021). 

Supplementary Video 1.    

Fig. 1. Ring origami: folding of ring assembly through buckling. (a) Schematic 
and (b) experiment of folding an elliptical ring assembly. Scale bar: 5 cm. 
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In this work, we develop a Kirchhoff rod-based theoretical model to 
study the twisting-induced snap-folding behaviors of differently shaped 
ring structures (circular, elliptical, rounded rectangular and rounded 
triangular rings) and investigate how the geometric parameters of rings 
affect the foldability and stability of the ring twisting process. Note that 
although the bending loads can also induce the snap-folding, this study 
focuses on the twisting since it is a simpler and more efficient loading 
approach in practice (Wu et al., 2021). In Section 2, we first introduce 
the classical Kirchhoff rod equations and present boundary conditions 
for the simplest case, i.e., twisting of circular rings, which poses a two- 
point boundary value problem (BVP). Next, we re-formulate the gov-
erning equations and boundary conditions for other shaped rings to 
obtain two-point BVPs such that they can be readily implemented into 
general-purpose numerical continuation packages. We then introduce 
the numerical solution method. In addition, 3D FEA models are pre-
sented for the twisting process of different rings to verify the theoretical 
model. Section 3 presents the results for different ring types. For each 
ring type, using the rod model, we identify various folding modes in 
terms of foldability, stability and snapping type, based on which we 
construct phase diagrams of folding modes with respect to geometric 
parameters for the ring profile and cross-section. Then, reduced planar 
rod models are developed to rapidly capture the folded shapes and 
construct diagrams of areal packing ratios. Section 4 summarizes the 
work and gives general mechanics insights into the controlling factors 
for the folding modes and areal packing ratios for the twisting of 
different rings. 

2. Model and methods 

2.1. Theoretical model 

2.1.1. Circular ring: Kirchhoff rod 
We model the ring structures as inextensible, unshearable Kirchhoff 

rods (Love, 2013). The Kirchhoff rod model is introduced in Appendix 
A.1. The governing equations given by Eq. (A.15) are a system of thir-
teen first-order ODEs with respect to the arc length s of the centerline of 
a rod. Briefly, Eq. (A.15)1-6 describe the balance of force F and moment 
M (equilibrium) where linear constitutive relations between the M and 
the Darboux vector k (defining the curvature) have been implied, Eq. 
(A.15)7-10 represent the kinematic relations for the local orientations 
(d1, d2, d3) of the rod cross-section (rotational), Eq. (A.15)11-13 represent 
the kinematic relation for the position vector r of the rod centerline 
(translational). 

Boundary conditions for the twisting of circular rings are given in 
Appendix A.2, where the 1/4 model is considered. The quaternion 
description of rotations is adopted, thus the rotational boundary con-
ditions are first expressed in Euler angles and then converted into 
quaternion components (q0, q1, q2, q3) using Eq. (A.24) (see Appendix 
A.3). The ODEs, together with the boundary conditions, can be readily 
used for a rod of (i) single-segment, i.e., a rod segment for which all 
dependent variables in ODEs are continuous, and with (ii) explicit forms 
of the natural curvature k1( u)(s) and its s-derivative, such as circular rings 
under twisting loads. 

For either elliptical rings which have no explicit form k1( u)(s) or multi- 
segment rings (such as rounded rectangular and triangular rings) which 
have multiple discontinuities in k1( u)(s) over the entire ring, the gov-
erning equations will be re-formulated and boundary conditions be 
given in the following two subsections. 

2.1.2. Elliptical ring: re-formulation 
Note in Eq. (A.15)4-6 (i.e., momentum-balance equations) that the 

natural curvature k1( u) and its s-derivative cannot be expressed as explicit 

functions of the arc length s, therefore we seek to re-parameterize the 
governing equations. Let a denote the length of the semi-horizontal axis 
(E3-axis, see Fig. A.1c), b = ca the length of the semi-vertical axis (E2- 
axis), c the aspect ratio. The centerline of a natural elliptical ring can be 
parameterized as r = (0, cacosτ, asinτ) in the global basis (E1, E2, E3) (see 
Fig. A.1c). Then k1( u) and its τ-derivative can be given as analytical 
functions of τ, i.e., 

k
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Here, the bars are included to distinguish dimensionless and 
dimensional variables, and the reference length L = a has been used for 
the normalization in Eq. (A.14), such thatk(u)

1 = k(u)
1 a. From Eq. (1), it is 

easy to write the initial curvatures at the boundaries (e.g., k(u)
1 (0) =

1/c2). Further, the τ-derivative of any relevant variables can be obtained 
using the s-derivative and the chain rule, i.e., 
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Applying Eq. (2) can re-formulate Eq. (A.15) as thirteen first-order 
ODEs with respect to the parameter τ. Here we give the momentum- 
balance equations as examples, 
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(3)  

where k(u)1 is given by Eq. (1). Note that the independent variable τ is 
then treated as the fourteenth dependent variable (whose τ-derivative ≡
1) to achieve an autonomous ODE system for easier numerical 
implementation. 

With the re-formulated system, we again consider the 1/4 model. Let 
the reference length L be a, the parameter τ is in [0, π/2], then the 
boundary conditions at τ = 0 and τ = π/2 follow exactly those of the 
circular rings (BC-I and BC-II of Fig. A.1c). 

2.1.3. Multi-segment rings: Augmented system 
For a rod with multiple connected segments, such as rounded rect-

angular and triangular rings, the natural curvature k(u)1 is discontinuous 
at the joints. Thus a multi-point BVP has to be considered. To facilitate 
the numerical implementation, we formulate the multi-point BVP as a 
two-point BVP using an approach as detailed below. The approach is 
similar to that used in Yu et al. (2021) and Ascher et al. (1995). We 
introduce a vector composed of components of all relevant variables, u 
= (F1, F2, F3, k1, k2, k3, q0, q1, q2, q3, r1, r2, r3), where (F1, F2, F3) and (k1, 
k2, k3) are components of F and k in the local basis (d1, d2, d3), 
respectively, (r1, r2, r3) are components of r in the global basis (E1, E2, 
E3). Thus Eq. (A.15) can be written as u’ = g(u, k1( u), α, β) where α and β 

are dimensionless parameters given in Eq. (A.16). Then the governing 
equations for a rod with n connected segments can be augmented as 
follows,  
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where (⋅)(i) represent the corresponding variable or function (•) for the i- 
th segment; α, β are omitted since they are identical for different seg-
ments of a ring; the chain rule d(⋅)/ds = d(⋅)/ds⋅ds/ds has been used for 
each segment to re-formulate the s(i)-derivative in Eq. (A.15), where s(i) 

∈ [0, L0( i)/L] is dimensionless segment arc length (with L0( i) being 
segment length and L an identical reference length), as the s-derivative 
in Eq. (4), where s ∈ [0, 1] is a unified arc length for all different seg-
ments. For rounded rectangular or triangular rings considered in our 
study, a segment is either circular or straight. L is set to be the radius of 
the rounded fillet, denoted as r; therefore the coefficient L0( i)/L is equal to 
the angle change θ(i) of i-th segment. After augmentation, for a rod with 
n connected segments, the complete ODE system (Eq. (4)) consists of 13n 
unknowns and 13n first-order differential equations with respect to one 
independent variable (i.e., s), thus requiring 13n boundary conditions to 
well-pose a two-point BVP system. 

For rounded rectangular rings, we consider the 1/4 model. The 
boundary conditions for u(1)(s = 0) and u(n)(s = 1) follow Eqs.(A.17), 
(A.18) and Eqs.(A.19), (A.20) described in Appendix A.2 (BC-I and BC-II 
of Fig. A.1c), respectively, which yields 13 boundary conditions. In 
addition, at each joint, the equilibrium and geometric compatibility 
imply 12 continuous conditions for F1, F2, F3, k2, k3, q0, q1, q2, q3, r1, r2, 
r3 and one jump condition for k1. These conditions at all joints can be 
formulated as mixed boundary conditions which couple the certain 
variables at two ends s = 0 and s = 1, providing additional 13(n-1) 
boundary conditions. The two-point BVP system is thus well-posed. 

For rounded triangular rings (limited to the isosceles case), we will 
use the 1/2 model due to the reduced symmetry. Opposite twisting loads 
are applied around the axis of symmetry of the ring. In this case, twisting 
angles are prescribed for u(1)(s = 0) and u(n)(s = 1), which follow BC-III 
and BC-II of Fig. A.1c, respectively. Equations for BC-III can be given in a 
similar way to that for BC-II (Appendix A.2). This would give 14 
boundary conditions, one more than expected. Similar to the circular 
rings (with 1/4 model) discussed in Appendix A.2, the condition |q|=1 
(q is the quternion vector, see Appendix A.3) is implied by Eq. (A.15)7-10 
and the prescription of four quaternion components for either s = 0 at 
segment 1 or s = 1 at segment n. Therefore, we specify four qi values for 
one end but only three qi values for the other end, obtaining 13 boundary 
conditions for u(1)(s = 0) and u(n)(s = 1). The remaining 13(n-1) 
boundary conditions are specified at all segment joints. 

2.1.4. Numerical solution method 
The well-posed two-point BVP system is numerically solved using the 

numerical continuation package, Continuation Core and Toolboxes 
(COCO) (Dankowicz and Schilder, 2013; Dankowicz and Schilder, 
2010), operated in MATLAB (2020a, MathWorks, Natick, MA). The BVP 
system is discretized using the orthogonal collocation method to yield a 
system of algebraic equations. COCO combines a continuation algorithm 
and a Newton iteration method (Dankowicz and Schilder, 2010) to solve 
the problem. We choose the twisting angle γ as the only continuation 
parameter. The solution starts from the initial ring configuration (γ = 0) 
and is continued along a solution path as γ varies. In each step, the 
dependent variables and γ are solved simultaneously. The continuation 
is terminated once γ reaches π, representing the completion of a simple 
twisting process. COCO (Dankowicz and Schilder, 2013) can identify 
singular points such as fold points (also referred to as snapping points or 
limit points) and branch points (Weinitschke, 1985; Eriksson et al., 
1999), where the instabilities would occur, and trace the solutions on 
one or multiple branches. In the absence of branch points (this is the case 

in our study), the numerical continuation yields a single solution path 
with varying γ, which allows us to extract an equilibrium curve for 
twisting moment versus γ. There may arise two types of snapping in-
stabilities, snap-through and snap-back (Crisfield, 1981; Crisfield, 
1986), which can be identified from the equilibrium curves. Generally, 
the former refers to the snapping behaviors that occur under the moment 
(“load”)-control, while the latter refers to those under the angle 
(“displacement”)-control. The fold points can be classified accordingly. 
For the ring twisting, the cases with snap-back must also involve the 
snap-through feature; therefore such cases will be identified as the snap- 
back scenario. 

Note that when computing the phase diagram, we perform contin-
uation on single parameter γ, instead of on others such as (α, β) or (h/t, ν) 
and other relevant geometric parameters, since the direct continuation 
on latter parameters does not represent a physically realistic process and 
may not yield correct foldability/stability behaviors. 

2.2. Finite element model 

To verify the rod theory, finite-element analysis (FEA) of the ring 
folding process is performed with the commercial software ABAQUS 
(2018, Simulia, Providence, RI), following our previous study (Wu et al., 
2021). Linear elastic model is utilized with Young’s modulus of 1.8 GPa 
and Poisson’s ratio of 0.3 to represent the polymer used for ring fabri-
cation. The 3D geometry is meshed with linear brick elements with 
reduced integration (C3D8R in ABAQUS element library). Mesh 
convergence study of circular rings is carried out to ensure the mesh 
independence of FEA prediction. The ring folding is induced by twisting 
two ends of the ring in reverse directions through an angle-controlled 
process. During the snap-folding, the two ends rotate and are free to 
translate along the twisting axis (Fig. A.1c). A small damping factor, 
which provides a negligible amount of dissipated energy, is used to 
stabilize the ring buckling simulations. The reaction moment-twisting 
angle curves and folding configurations of rings are exported to 
compare with the rod-model predictions. Since our focus is the influence 
of the geometry and dimension on the folding, the self-contact of the 
ring during folding is not considered for both theoretical model and FEA 
simulations. 

2.3. Experiments 

The 6-ring assembly presented in Fig. 1 is fabricated by joining 
adjacent elliptical rings with tape. Stainless steel strips of rectangular 
cross-section (0.50 mm thickness, 2.0 mm height) are manually shaped 
to form the elliptical rings, with b/a = 0.6. All the plastic rings with 
different geometries and cross-section properties presented in the results 
section are prepared by filling a UV curable polymer resin into prede-
signed polydimethylsiloxane molds (PDMS) (Sylgard 184, DowCorning 
Inc., USA), followed by a two-step curing process, i.e., UV curing for one 
minute and a post thermal curing at 80 ◦C for 10 min. The UV curable 
resin contains isobornyl acrylate (Sigma Aldrich, USA) and tricyclode-
canedimethanol diacrylate (Sigma Aldrich) with a weight ratio of 80:20. 
1 wt% photoinitiator (Irgacure 819, Sigma Aldrich) is added for free 
radical polymerization. In addition, 0.01 wt% fluorescent dye (Solvent 
green 5, Orichem International Ltd., China) is used for light fluores-
cence. Uniaxial tensile tests of the cured resin are performed, showing a 
Young’s modulus of 1.8 GPa. 

d

ds

(

u(1),u(2), ..., u(n) ) =
(

L
(1)
0

L
g
(

u(1), k
(u)(1)
1

)

,
L
(2)
0

L
g
(

u(2), k(u)(2)1

)

, ...,
L
(n)
0

L
g
(

u(n), k(u)(n)1

)

)

(4)   
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3. Results and discussions 

Comparing to our previous study (Wu et al., 2021), results obtained 
from the rod model will be mainly presented, focusing on the phase 
diagrams of folding modes (foldability, stability and snapping type) and 
areal packing ratios and the resulting new insights into the folding 
mechanics for differently shaped rings. Comparisons with previous re-
sults (FEA and experiments) will also be given for the validation of the 
rod model and completeness of the result presentation. 

We see from Eq. (A.15) that the ring folding is governed by the rod’s 
bending-to-torsional rigidity ratios α and β, which are functions of 
Poisson’s ratio ν and h/t for rectangular cross-sections (Eq. (A.16)). The 
non-circular rings are governed by additional parameters that describe 
the ring shape (see Eqs. (3) and (4)). Due to the inextensible, unshear-
able assumption, the folding is not affected by the ratio of overall to 
cross-sectional dimensions. We therefore fix ν = 0.3 and the overall 
dimension to thickness ratio specific to each ring shape and focus on 
studying how the cross-section (h/t) and ring profile geometries affect 
the folding behavior. 

3.1. Circular ring 

We first consider the case of circular rings to gain initial insights into 
the ring folding process. Fig. 2a illustrates the geometry of the ring, 
where R denotes the radius, h and t denote the height (out-of-plane) and 
thickness (in-plane) of the cross-section, respectively. R/t = 200 is 

adopted in the FEA model and experiments. Using the rod model, we 
construct a solution manifold in the 3D parametric space from the 
calculated moment (MR/GJ)-angle (γ) curves for different h/t values 
(Fig. 2b). Curves with representative h/t values are highlighted against 
the FEA results. The deformed shapes during the twisting are also 
compared with the FEA and experiment (Fig. 2c). Excellent agreements 
are achieved in both the curves and deformed shapes, except the 
discrepancy due to the self-contact. 

Four folding modes with respect to h/t are identified from the curves: 
un-foldable (h/t < 1.51), unstable folding with snap-back (1.51 ≤ h/t <
1.84), unstable folding with snap-through only (1.84 ≤ h/t < 3.48) and 
stable folding with snap-through only (h/t ≥ 3.48). The folded rings are 
in the planar three-covered state regardless of h/t, corresponding to the 
areal packing ratio of 1/9. These are further discussed as follows. 

Foldability is determined by the twisting moment at γ = π. The folded 
ring is in a pure bending state (e.g., h/t = 4, Fig. 2c), implying that M(γ 

= π) = 0 (Appendix B); whilst the un-foldable ring involves the com-
bined bending and twisting (e.g., h/t = 1, Fig. 2c), thus M(γ = π) > 0. 
Note that the three-covered shape is always an equilibrium solution, e. 
g., for h/t = 1 (Fig. C.1, Appendix C.1), such solution can be attained by 
the further continuation of γ, which, however, is neither accessible nor 
stable under the simple twisting. Therefore, such cases are identified as 
un-foldable cases. 

Stability is determined by the moment–angle slope at γ = π. The 
negative slope implies that the removal of external loading would cause 
the ring to deploy. This corresponds to a local maximum in the strain 

Fig. 2. Folding of circular rings. (a) Schematic of ring geometry and applied twisting load. (b) Relations between the normalized applied moment MR/GJ and 
twisting angle γ predicted by the rod theory (solid lines) and FEA (dashed lines) for different h/t values. (c) Rod-model, FEA and experimental folding processes 
(snapshots of deformed shapes at different γ values) of circular rings for cases with h/t = 1 (left) and 4 (right). 
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energy-angle plot (see h/t = 2 in Fig. C.2, Appendix C.2). In contrast, the 
positive moment-angle slope at γ = π represents a local minimum of 
strain energy (see h/t = 4 or 8 in Fig. C.2), and the folded configuration 
can hence maintain stably. The stable folding for h/t = 4 is validated by 
the experiments (Fig. 2c). 

We further analyze the snapping type for the foldable cases. The 
snap-through (or non-monotonic moment–angle relation) can be seen 
for all the cases in Fig. 2b, implying the structural buckling. We further 
identify the snap-back (snapping that occurs under the angle control) 
instability, which is present for a small range of h/t. In a practical hand- 
folding process (the moment and angle cannot be accurately prescribed), 
the foldable rings will snap to the folded configuration in a self-guided 
manner after the snapping points. 

Increasing h/t promotes the foldability and stability. Intuitively, the 
twisting loads induce the combined bending (k1, k2) and twisting (k3) in 
the ring; the successful folding relies on the preference for in-plane 
bending (k1) to trigger appropriate buckling. For h/t = 1, there is no 
preferred bending direction. Increasing h/t leads to more dominating in- 
plane bending (k1), thus making it easier to trigger the snap-folding. This 
principle applies to all the ring shapes to be studied. 

3.2. Elliptical rings 

Next, we consider the case of elliptical rings. Fig. 3a illustrates the 
geometry of the ring. Without loss of generality, let a and b denote the 

lengths for the semi-major axis (or y-axis) and semi-minor axis (or x- 
axis), respectively (a > b); h and t are the same as before. The a/t = 200 is 
adopted in the FEA model and experiments. Relevant geometric pa-
rameters include the elliptical profile aspect ratio b/a (which describes 
the ring narrowness), cross-sectional aspect ratio h/t and the twisting 
axis. Ma/GJ is used as the dimensionless moment. 

Using the rod model, we construct a phase diagram of foldability, 
stability and snapping type in the parametric space of b/a (0.5 ~ 1) and 
h/t (0 ~ 4) from the calculated moment–angle relationships (Fig. 3a). 
Diagrams for the x-axis and y-axis twisting are joined together at the b/a 
= 1 (circular ring) boundary. Five regions are identified: un-foldable, 
unstable folding with snap-through only, unstable folding with snap- 
back, stable folding with snap-through only, and stable folding with 
snap-back. Although the un-foldable case may also involve snapping, the 
snapping type is identified only for foldable cases. The marked symbols 
in Fig. 3a are representative cases whose moment–angle curves and/or 
ring shapes during the twisting by the rod model are compared with 
those by the FEA and experiments in Fig. 2 (b/a = 1, circular ring, 
different h/t), Fig. 4 (b/a = 0.6, different h/t and twisting axes) and 
Fig. D.1 (h/t = 4, different b/a and twisting axes, Appendix D.1). 
Excellent agreements among the rod model, FEA and experiments vali-
date the rod model. Next, we discuss the insights acquired from the 
phase diagram. 

First, increasing h/t generally promotes the foldability and stability. 
As h/t increases, a transition from un-foldable to unstable folding and 

Fig. 3. Elliptical ring folding through 
twisting. (a) Phase diagram for the folding 
modes of elliptical rings with respect to b/a, 
h/t and the twisting axis. Snapping type is 
identified for foldable cases only. The 
marked symbols are representative cases 
whose moment–angle curves are provided in 
Fig. 2 (b/a = 1, different h/t), Fig. 4 (b/a =
0.6, different h/t and twisting axes) and 
Fig. D.1 (h/t = 4, different b/a and twisting 
axes) (b) Areal packing ratios of folded 
elliptical rings versus b/a obtained using the 
planar rod model (Appendix B). For repre-
sentative b/a values, the planar rod model- 
predicted folded shapes as well as the final 
shapes of the ring twisting (γ = π, h/t = 4) 
are provided.   
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then to stable folding is present (Fig. 3a). The transition in 
moment–angle curve can be seen in an example case of b/a = 0.6, x-axis 
twisting (Fig. 4b left). 

Second, the rings with relatively small b/a (<0.78) and the y-axis 
(long-axis) twisting are always un-foldable (Fig. 3a; see curves for the 
example case of b/a = 0.6 in Fig. 4b right). Indeed, the x-axis (short-axis) 
twisting thus exhibits superior foldability (i.e., greater phase zone) than 
that of the y-axis (long-axis) case (Fig. 3a). Intuitively, this is because the 
change of moment-arm length influences the combination of bending 
(k1, k2) and twisting (k3) deformations. 

Third, the stability boundaries for the x-axis and y-axis twisting are 
nearly identical (i.e., symmetric to the b/a = 1 axis), both showing 
increased stability (i.e., more inside the stable zone, possessing higher 
moment-angle slope at γ = π and thus resisting more fluctuation in 
loadings or geometries) with reduced b/a (increased narrowness) 
(Fig. 3a). The nearly identical stability boundary for the two twisting 
axes is expected because they possess the identical folded shape and very 
similar deploying deformation mode. We, therefore, infer that the sta-
bility boundary within the y-axis twisting, un-foldable region (the folded 
ring may be achieved through complex loadings) is also identical to that 
with the x-axis twisting. 

Fourth, regarding the snapping type, the snap-through dominates in 
the x-axis twisting while the snap-back mainly falls in the y-axis twisting 
(Fig. 3a). The equilibrium moment–angle curve (solid line) for an 
example case with snap-back (h/t = 4, b/a = 0.85, y-axis twisting) is 
shown in Fig. D.1b, which well captures the two snapping points of the 
angle-controlled FEA curves (dashed) during loading and unloading and 

the resulting hysteresis behavior. In short, the stability of a folded 
elliptical ring is affected by the ring profile (b/a) and the cross-section 
(h/t) but not by the twisting axis; the foldability and snapping type 
are affected by all the three factors (Fig. 3a). 

Finally, the folded ring shape depends only on the ring profile (b/a) 
and not on the other two factors (although they affect the foldability); all 
the successfully folded rings are at the three-covered state (∫ L0

0 k1ds =
6π). To better guide the design of ring origami, we study the areal 
packing ratios for different b/a values. Since the rings may be un- 
foldable under simple twisting, instead of only using the ring-twisting 
model for the folded shapes, we present a reduced planar rod model 
(Appendix B) that can rapidly capture the folded shapes to construct the 
relationship between the areal packing ratio and b/a (Fig. 3b). For 
representative b/a values, the folded shapes calculated by the reduced 
model, as well as the final shapes by the ring twisting (γ = π, h/t = 4), are 
shown as insets (Fig. 3b). For the foldable rings under simple twisting, 
the final shapes are consistent with those by the reduced model; for the 
un-foldable rings, the final shapes are not at the folded (three-covered) 
states. In addition, decreasing b/a (increasing narrowness) can increase 
the areal packing ratio; the lowest packing ratio is 1/9, achieved by the 
circular rings (b/a = 1.0). 

3.3. Rounded rectangular rings 

We consider the case with rounded rectangular rings. Fig. 5a illus-
trates the geometry of the ring. Let a and b denote the lengths for the 

Fig. 4. Elliptical ring folding through twisting. (a) Schematic of ring geometry and applied twisting load. (b) Normalized twisting moment Ma/GJ versus angle γ 

curves obtained using rod theory (solid lines) and FEA (dashed lines) for fixed b/a = 0.6 and different h/t values and twisting axes (left: x-axis; right: y-axis). (c) Rod- 
model, FEA and experimental folding processes through the x-axis twisting for h/t = 1 (left) and 4 (right). 
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semi-major axis (or y-axis) and semi-minor axis (or x-axis), respectively; 
r is the radius of rounded fillets; h and t are the same as before. The a/t =
200 is adopted in the FEA and experiments. Relevant geometric pa-
rameters include b/a (which describes the narrowness), relative fillet 
radius r/a (which describes the sharpness), h/t and the twisting axis. 
Ma/GJ is used as the dimensionless applied moment. 

Using the rod model, we construct a 3D phase diagram of the fold-
ability, stability and snapping type in the parametric space of b/a (0.2 ~ 
1), r/a (0.1 ~ 1) and h/t (1 ~ 4) from the calculated moment–angle 
relationships (Fig. 5a). Diagrams for the x-axis and y-axis twisting are 
joined together at the b/a = 1 (rounded square ring) boundary. Note that 
the condition r/a ≤ b/a must be met, so the phase diagram occupies a 
prismatic space. Five phases are identified and separated by multiple 
boundary surfaces. For better visualization, we give two 2D phase dia-
grams sliced from the 3D diagram for two special rectangular rings, i.e., 
the stadium ring (r = b, Fig. 5b) and the square ring (a = b, Fig. 5c), 

respectively. The cases used to determine the phase boundaries are 
marked in three diagrams. To better guide the design, we further 
construct a 2D contour diagram of the areal packing ratio of the folded 
rings with respect to the b/a and r/a (Fig. 6) using an analytical formula 
Eq. (B.8) derived from the reduced planar rod model (Appendix B). For 
representative b/a and r/a values, the folded shapes by Eq. (B.8) and the 
final shapes by the x-axis twisting (γ = π, h/t = 4), as displayed together 
in Fig. 6, are exactly overlapped. 

In addition, for some representative geometric parameters, the 
moment–angle curves and/or ring shapes during the twisting by the rod 
model are compared with those by the FEA and experiments, as shown in 
Fig. 7 (r/a = 0.3, b/a = 0.6, different h/t and twisting axes) and Fig. D.2 
(r/a = 0.3, h/t = 4, different b/a and twisting axes, Appendix D.2). 
Excellent agreements are achieved among the rod model, FEA and ex-
periments, except the discrepancy in the ring shapes due to self-contact 
(e.g., Fig. 7c). Next, we discuss the insights acquired from the phase 

Fig. 5. Folding of rounded rectangular rings through twisting. (a) Three-dimensional phase diagram for the folding modes of rounded rectangular rings with respect 
to the geometric parameters b/a, r/a and h/t, and the twisting axis. Five regions are identified: un-foldable, unstable folding with snap-through, unstable folding with 
snap-back, stable folding with snap-through, and stable folding with snap-back. (b)-(c) Two-dimensional phase diagrams for (b) r = b and (c) a = b. 
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diagram and the areal packing ratio diagram, supplemented by results 
from the representative cases. 

First, increasing h/t generally promotes the foldability and the folded 
ring’s stability (Fig. 5a-5c). As an example, for r/a = 0.3 and b/a = 0.6, 

the ring exhibits a transition from un-foldable to stable folding as h/t 
increases for both twisting axes (Fig. 7b). 

Second, due to the geometric similarity, the elliptical ring and 
rounded rectangular ring exhibit some similar physical features. For 
example, reducing b/a (increasing narrowness) promotes the stability 
under the x-axis twisting but tends to diminish the foldability under the 
y-axis twisting (Fig. 5a and 5b; see Fig. D.2b for example). The x-axis 
(short-axis) twisting thus exhibits superior foldability and stability (i.e., 
greater phase zones) than that of the y-axis (long-axis) twisting. 
Although the stability boundaries should be identical for the two axes, 
the reduced foldability under the y-axis twisting leads to isolated, 
smaller phases regions for the stable folding (e.g., b/a ≈ 0.6, r/a < 0.4, 
h/t > 3.0). Indeed, for the stadium ring, the nearly identical stability 
boundaries for the two twisting axes as well as a great similarity in the 
entire phase diagram to the elliptical ring can be seen (Fig. 5b). 

Third, the rectangular ring also exhibits similar snapping features to 
the elliptical ring. The snap-through dominates in the x-axis twisting 
regardless of b/a while transitioning to the snap-back in the y-axis 
twisting as b/a decreases (narrowness increases) (Fig. 5a and b). An 
example case with snap-back (r/a = 0.3, b/a = 0.6, h/t = 4, y-axis 
twisting) is shown in Fig. 7b, where the two snapping points and hys-
teresis present in the FEA (angle control) loading–unloading curves are 
well captured by the theoretical equilibrium curve. For the square ring 
(b/a = 1), the unstable folding with snap-through dominates the fold-
able region (Fig. 5c; see Fig. D.2b for the curves with h/t = 4 and 

Fig. 6. Areal packing ratios of the folded rounded rectangular rings versus b/a 
and r/a obtained using Eq. (B.8) (Appendix B). The folded shapes by Eq. (B.8) 
and the final shapes by the ring twisting (γ = π, h/t = 4, x-axis) for represen-
tative cases are provided. 

Fig. 7. Folding of rounded rectangular rings through twisting. (a) Schematic of ring geometry and applied twisting load. (b) Normalized twisting moment Ma/GJ 
versus angle γ curves obtained using rod theory (solid lines) and FEA (dashed lines) for b/a = 0.6, r/a = 0.3 and different h/t values and twisting axes (left: x-axis; 
right: y-axis). (c) Rod-model, FEA and experimental folding processes through the x-axis twisting for h/t = 1 (left) and 4 (right). 
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different r/a values). 
Fourth, the fillet size r/a has insignificant effects on the foldability 

and stability (Fig. 5a and c; see Fig. D.2b for example), but a very sharp 
square ring (r/a = 0.1 or below) is un-foldable (Fig. 5c). 

Finally, in summary, the stability of a folded ring is affected by the 
ring profile (b/a and r/a) and the cross-section (h/t) but not very sen-
sitive to the twisting axis; the foldability and snapping type are affected 
by the three factors (Fig. 5a); the folded shapes depend on the b/a and r/ 
a but not on the other two factors, and are always in the three-covered 
state (Fig. 6). In addition, decreasing b/a (increasing narrowness) and r/ 
a (increasing sharpness) can increase the areal packing ratio. The lowest 
packing ratio (1/9) is achieved by the circular rings (b/a = r/a = 1.0) 
and the highest ratio (0.80) by the narrowest (b/a = 0.2) rectangular 
ring. The very sharp (r/a = 0.1) square ring can still achieve a low 
packing ratio (0.24). 

3.4. Rounded triangular ring 

Finally, we consider the case with rounded isosceles triangular rings. 
Fig. 8a illustrates the geometry of the ring, where αT is the vertex angle, 
a is the base length, r is the radius of rounded fillets, and h and t are the 
same as before. The a/t = 600 is adopted in the FEA and experiments. 
Relevant geometric parameters include the αT, r/a (describing the 
sharpness) and h/t. Ma/GJ is used as the dimensionless applied moment. 

Using the rod model, we construct a 3D phase diagram of the fold-
ability, stability and snapping type with respect to αT (30◦ ~ 120◦), r/a 
(0.033 ~ 0.384) and h/t (1 ~ 4) (Fig. 8a). The constraint r ≤ RC must be 
satisfied, where Rc denotes the radius of the ring’s inscribed circle, 

RC = a

2
tan
(π

4
− αT

4

)

(5) 

The phase diagram thus occupies a prismatic space. The r = RC im-
plies a circular ring. Five phases are identified and separated by multiple 
boundary surfaces. For better visualization, we give two 2D phase dia-
grams sliced from the 3D diagram for two special triangular rings with 
αT = 60◦ (Fig. 8b) and αT = 120◦ (Fig. 8c), respectively. The cases used to 
determine the phase boundaries are marked in three diagrams. To better 
guide the design, we further construct a 2D contour diagram of the areal 

Fig. 8. Folding of rounded triangular rings through twisting. (a) Three-dimensional phase diagram for the folding modes of rounded triangular rings with respect to 
the geometric parameters αT, r/a and h/t. Five regions are identified: un-foldable, unstable folding with snap-through, unstable folding with snap-back, stable folding 
with snap-through, and stable folding with snap-back. (b)-(c) Two-dimensional phase diagrams for (b) αT = π/3 and (c) αT = 2π/3. 

Fig. 9. Areal packing ratio of the folded rounded triangular rings with respect 
to geometric parameters. The folded shapes for representative αT and r/a values 
are provided. 
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packing ratio of the folded rings with respect to the αT and r/a (Fig. 9). 
The folded shapes for representative αT and r/a values are also shown. 

In addition, for some representative geometric parameters, the 
moment–angle curves and/or ring shapes during the twisting by the rod 
model are compared with those by the FEA and experiments, as shown in 
Fig. 10, Fig. 11 and Fig. D.3. Excellent agreements are achieved among 

the rod model, FEA and experiments, except the discrepancy in the ring 
shapes due to self-contact. Next, we discuss the insights acquired from 
the phase diagram and the areal packing ratio diagram, supplemented 
by results from these representative cases. 

First, the general principle that increasing h/t promotes the fold-
ability and stability still holds true in a large parametric space (Fig. 8a–c; 

Fig. 10. Folding of rounded triangular rings through twisting. (a) Schematic of ring geometry and applied twisting load. (b), (c) Relations between the normalized 
applied moment Ma/GJ and twisting angle γ predicted by rod model (solid lines) and FEA (dashed lines) for different geometries. The r/a value is adjusted according 
to αT such that r/RC = 1/2. (b) αT = π/3 (equilateral), r/a = ̅̅̅3√

/12 (≈0.144) and different h/t values. (c) αT = 2π/3, r/a = 1/15 and different h/t values. The h/t = 1 
case shows a very complex equilibrium curve, which is truncated at γ = 7π/8 for clearer displaying. The complete curve is shown in Fig. 11a. (d), (e) Rod-model, FEA 
and experimental folding processes of triangular rings for cases with h/t = 1 (left) and 4 (right). (d) αT = π/3. (e) αT = 2π/3. 

X. Sun et al.                                                                                                                                                                                                                                      



International Journal of Solids and Structures 248 (2022) 111685

12

see Fig. 10b and c for examples of the transition in the moment–angle 
curve as h/t changes). 

Second, the ring with vertex angle αT in [75◦, 120◦] shows superior 
foldability and stability (i.e., greater phase zones) than that with αT in 
[30◦, 75◦] (Fig. 8a; see Fig. D.3a for the transition in the moment–angle 
curve as αT changes). Reducing the fillet size r/a (increasing sharpness) 
would diminish foldability for the smaller αT range (e.g., αT = 60◦, 
Fig. 8b), but affects little on the foldability and could even significantly 
promote the stability for the larger αT range (e.g., αT = 120◦, Fig. 8c; see 
Fig. D.3b for the transition in the moment–angle curve as r/a changes). 
Note that reducing r/a can also complicate the equilibrium path (see 
Fig. D.3 and Fig. 11). 

Third, the foldable region is dominated by unstable folding (Fig. 8a 
and 8b). The stable folding is only achieved in nearly circular rings (r/a 
≈ RC) or relatively sharp (r/a < RC/2) rings with obtuse αT (e.g., αT =
120◦, Fig. 8c). Most stable folding cases are dominated by snap-through, 
while using very small fillet size (r/a ≤ 0.033) could lead to snap-back 
instabilities and very complex equilibrium paths. Fig. 11a and b show 
examples for the un-foldable and stable folding cases, respectively. For 
either case, the FEA (angle control) curve follows the theoretical curve 
but snaps at different points during loading and unloading. A certain 
segment of theoretical curve is un-accessible within the snap-back re-
gion. Also, the strain energy curve shows the loss in strain energy when 
the solution snaps, which is dissipated by ABAQUS to accommodate the 
snapping. 

Finally, in summary, the foldability, the folded ring’s stability, and 
the snapping type are affected by all the geometric parameters: the ring 
profile (αT and r/a) and the cross-section (h/t) (Fig. 8a). The folded ring 
shapes depend on αT and r/a but not on the h/t value; all the successfully 
folded rings are at the three-covered state (Fig. 9). In addition, 
increasing αT and decreasing r/a (increasing sharpness) can increase the 
areal packing ratio. The lowest packing ratio (1/9) is achieved for the 
circular rings (r/RC = 1.0) and the highest ratio (0.66) by the sharpest 
(r/a = 0.033) obtuse triangular ring (αT = 120◦). Interestingly, the 

equilateral (αT = 60◦) triangular rings with r/a = 0.2 can achieve a very 
low packing ratio (0.12). 

4. Conclusions 

We present a theoretical, computational and experimental study on the 
snap-folding mechanics of differently shaped rings (circular, elliptical, 
rounded rectangular and rounded triangular rings) under twisting loads. 
We first present a theoretical model for the ring folding problem using the 
Kirchhoff rods (inextensible and unshearable) and formulate the twisting 
of different rings into two-point BVP systems. The equations for the 
Kirchhoff rods are re-formulated for elliptical rings and are augmented for 
the multi-segment rings. The two-point BVPs are then solved through 
numerical continuation, yielding equilibrium solution paths for the ring 
twisting process. In addition, we develop 3D FEA models for twisting of 
different rings. The reduced planar rod models are presented to rapidly 
capture the folded configurations. Using the two models, we study the 
folding mechanics of differently shaped rings. For all the cases, the rod 
model predicts quantitatively consistent folding behaviors with the FEA 
simulations and the experiments. Three folding modes in terms of fold-
ability and stability (i.e., un-foldable, stable folding and unstable folding) 
are identified from the moment–angle curves by the rod model. For the 
foldable cases, two snapping modes, i.e., snap-through and snap-back, are 
further identified. We then construct the phase diagrams for different 
rings, describing these folding modes (i.e., foldability, stability and snap-
ping type) with respect to relevant geometric parameters (cross-section 
and ring profile parameters). 

Generally, applying simple twisting loads can only achieve the three- 
covered folded states; increasing the cross-sectional aspect ratio h/t 
promotes the foldability and the folded ring’s stability for all the 
different rings. The elliptical and rounded rectangular rings exhibit 
qualitatively similar behaviors: the stability is not affected by the 
twisting axis, which tends to be promoted with the increasing narrow-
ness (decreasing b/a); whilst the foldability tends to be promoted for the 

Fig. 11. Folding of rounded triangular rings through twisting. Moment-angle and strain energy-angle relations for cases with snap-back instabilities: (a) un-foldable 
case, αT = 2π/3, r/a = 1/15, h/t = 1 and (b) stable folding case, αT = π/2, r/a = 1/30, h/t = 4. The rod-model predicted equilibrium curves (solid lines), as well as the 
FEA-predicted loading (dashed lines) and unloading (dotted lines) curves, are provided. U is the strain energy and Ua/GJ is used as the dimensionless energy. 
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x-axis twisting but to be diminished for the y-axis twisting with the 
increasing narrowness; the snap-through dominates in the x-axis 
twisting while the snap-back becomes more significant in the y-axis case. 
For triangular rings, using the obtuse rather than acute vertex angle αT 
generally promotes foldability and stability. The unstable folding dom-
inates; the stable folding is only achieved in highly rounded (i.e., nearly 
circular) rings or relatively sharp (r/a < RC/2) rings with obtuse αT; 
most stable folding cases are dominated by snap-through. 

Finally, we study the folded configurations and areal packing ratios 
for different rings. Diagrams of areal packing ratios with respect to 
relevant geometric parameters are obtained using the reduced planar 
rod model. The lowest areal packing ratio (1/9) is achieved for circular 
rings. Increasing the narrowness (elliptical and rectangular rings) or 
reducing the roundness (rectangular and triangular rings) generally in-
crease the packing ratio (i.e., less compacted). 

The areal packing ratio diagrams, together with the phase diagrams 
of folding modes, can guide the design of ring origami. Although this 
study only focuses on the snap-folding under twisting loads, our 

approach can be used to model the bending- or intrinsic curvature- 
induced folding process of differently shaped rings, which have alter-
native deforming paths. This will be studied in the future. 
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Appendix A. Theoretical model for twisting of rings 

A.1. Kirchhoff rod model 

In this section, we briefly summarize the theory of Kirchhoff rods (Love, 2013). An inextensible and unshearable rod is considered. As shown in 
Fig. A.1a, the centerline of the rod is described by a position vector r(s), where s ∈ [0, L0] is the arc length and L0 is the total length of the rod segment, 
which does not change due to the inextensible assumption. A local orthonormal director basis, (d1(s), d2(s), d3(s)), attached to the centerline can be 
defined, where d3(s) is the unit tangent vector of the centerline, 
d3 = r

′ (s) (A1)  

with (•)’ = d(•)/ds here and in what follows. The d1(s) and d2(s) are two orthonormal unit vectors representing the principal orientations of a rod 
cross-section at s, which remain perpendicular to d3(s) due to the unshearable assumption; the basis satisfies the right-handed convention (i.e., d3 = d1 
× d2). The kinematic description for rotating of the local basis is given by 
d

′
i(s) = k × di(s), i = 1, 2, 3 (A2)  

where k = k1d1 + k2d2 + k3d3 is the Darboux vector, whose first two components k1 and k2 in the local basis represent the bending curvatures 
associated with the frame rotation around d1 and d2 as s changes, and the third component k3 represents the twisting density, a metric of frame 
rotation around d3. To facilitate understanding, an alternative matrix form of Eq. (A.2) can be written as 

d

ds

⎧

⎨

⎩

d1

d2

d3

⎫

⎬

⎭

=

⎛

⎝

0 k3 −k2

−k3 0 k1

k2 −k1 0

⎞

⎠

⎧

⎨

⎩

d1

d2

d3

⎫

⎬

⎭

= [K]

⎧

⎨

⎩

d1

d2

d3

⎫

⎬

⎭

(A3) 

In Kirchhoff rod theory, the stress acting on the cross-section at r(s) gives rise to a resultant force F(s) and resultant moment M(s) attached to the 
centerline. The balance for linear and angular momentum in terms of F and M, upon dropping the inertial effects yields the static equilibrium 
equations. 

F
′ + f = 0

M
′ + r

′ × F + m = 0
(A4)  

where f and m are the body force and couple per length. Here, we assume f = 0 and m = 0 since no gravity, self-contact or other distributed loads are 
considered. Then, with the help of Eq. (A.3), projecting Eq. (A.4) along the local basis (d1, d2, d3) yields six scalar equations for equilibrium, 
F

′
1 −F2k3 +F3k2 = 0, F

′
2 −F3k1 +F1k3 = 0, F

′
3 −F1k2 +F2k1 = 0 (A5)  

M
′
1 −M2k3 +M3k2 −F2 = 0, M

′
2 +M1k3 −M3k1 +F1 = 0, M

′
3 −M1k2 +M2k1 (A6)  

where Fi and Mi are components of F and M in the local basis. Eqs. (A.5) to (A.6) represent the local forms for the balance of forces and moments at 
static equilibrium. 

Linear constitutive relation is used to further modify the equilibrium equations. We use k(u), the unstressed Darboux vector, to define the natural 
shape of the rod. Then the deformation (k-k(u)) is related to the resultant moment M of a cross-section through 
M = EI1

(

k1 − k
(u)
1

)

d1 +EI2

(

k2 − k
(u)
2

)

d2 +GJ
(

k3 − k
(u)
3

)

d3 (A7)  
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where E is the Young’s modulus and G the shear modulus of the material, which are related through E = 2G(1 + ν), with ν being the Poisson’s ratio. The 
I1, I2 and J are the second moments and the torsion constant of the cross-section, respectively. For a rectangular cross-section with height h (in d1 
direction) and thickness t (in d2 direction), they are given by (Timoshenko and Goodier, 1951) 

I1 = 1

12
ht3, I2 = 1

12
h3t, J = ht3

3

[

1 − 192

π5

t

h

∑

∞

n=1

1

(2n − 1)5
tanh

(

π(2n − 1)h
2t

)

]

(A8) 

All the rings studied here stay naturally in a plane when unstressed, i.e., k2( u) = k3( u) = 0. In addition, the extensive and shear fdeformations are 
kinematically prescribed as zero (there is no constitutive relation for F). Inserting components of Eq. (A.7) into Eq. (A.6) leads to three modified 
equations as follows where ki have replaced Mi to become the dependent variables. 

k
′
1 = k

(u)′

1 + 1

EI1

F2 +
(

I2

I1

− GJ

EI1

)

k2k3

k
′
2 = − 1

EI2

F1 −
(

I1

I2

− GJ

EI2

)

k1k3 +
I1

I2

k
(u)
1 k3

k
′
3 =

EI1 − EI2

GJ
k1k2 −

EI1

GJ
k
(u)
1 k2

(A9) 

Next, the equilibrium Eqs. (A.5) and (A.9) are supplemented with the kinematic relations Eqs. (A.1) and (A.3) For easier specification of boundary 
conditions, we write r(s) in a global form as r = r1E1 + r2E2 + r3E3, where (E1, E2, E3) is a global orthonormal basis, which is related to the local basis 
(d1, d2, d3), with the help of quaternion parameterization of rotations, through (Healey and Mehta, 2005; Yu and Hanna, 2019) 

Fig. A1. Schematic of (a) the global and local director basis for a Kirchhoff rod, (b) the rotation defined using Euler angles with the 3–2-3 convention, and (c) the 
boundary conditions (BCs) for different ring geometries under the twisting loads. 
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⎧

⎨

⎩

d1

d2

d3

⎫

⎬

⎭

= 2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

q2
0 + q2

1 −
1

2
q1q2 + q0q3 q1q3 − q0q2

q1q2 − q0q3 q2
0 + q2

2 −
1

2
q2q3 + q0q1

q1q3 + q0q2 q2q3 − q0q1 q2
0 + q2

3 −
1

2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎧

⎨

⎩

E1

E2

E3

⎫

⎬

⎭

= [Q]

⎧

⎨

⎩

E1

E2

E3

⎫

⎬

⎭

(A10) 

where (q0, q1, q2, q3) are functions of arc length s and form a unit quaternion q whose inner product|q| = q2
0 + q2

1 + q2
2 + q2

3 = 1. 
Assisted by Eqs. (A.10), Eq. (A.1) can be written in components 

r
′
1 = 2(q1q3 + q0q2), r

′
2 = 2(q2q3 − q0q1), r

′
3 = 2

(

q2
0 + q2

3 −
1

2

)

(A11)  

which describes the kinematics for the rod centerline’s position. 
Taking derivative of Eq. (A.10) and substituting with Eq. (A.3), we obtain 

[K][Q] = d

ds
[Q] (A12) 

Comparing components on two sides of Eq. (A.12) yields alternative equations for Eq. (A.3), 

q
′
0 = 1

2
( − q1k1 − q2k2 − q3k3), q

′
1 =

1

2
(q0k1 − q3k2 + q2k3),

q
′
2 = 1

2
(q3k1 + q0k2 − q1k3), q

′
3 = 1

2
( − q2k1 + q1k2 + q0k3).

(A13)  

which describes the kinematics for the rod cross-section’s orientations. 
Combining Eqs. (A.5), (A.9), (A.11) and (A.13) gives a system of thirteen equations. We perform the normalization on relevant variables and 

derivative-operator through 

(ri, s) = (ri, s)
L

,
(

ki, k
(u)
i

)

=
(

ki, k
(u)
i

)

L, Fi =
L2

GJ
Fi, (⋅)′ = d(⋅)

ds

1

L
(A14)  

where L is a reference length and will vary for different ring geometries. Thus the dimensionless arc lengths ∈ [0, L0/L]. Dropping the bars (i.e., using 
original symbols to represent the normalized variables) for convenience, one obtains the dimensionless governing equations, 

F
′
1 = F2k3 − F3k2, F

′
2 = F3k1 − F1k3, F

′
3 = F1k2 − F2k1

k
′
1 = k

(u)′

1 + 1

α
F2 +

(

β

α
− 1

α

)

k2k3

k
′
2 = −1

β
F1 −

(

α

β
− 1

β

)

k1k3 +
α

β
k
(u)
1 k3

k
′
3 = (α − β)k1k2 − αk

(u)
1 k2

q
′
0 = 1

2
( − q1k1 − q2k2 − q3k3), q

′
1 =

1

2
(q0k1 − q3k2 + q2k3)

q
′
2 = 1

2
(q3k1 + q0k2 − q1k3), q

′
3 = 1

2
( − q2k1 + q1k2 + q0k3)

r
′
1 = 2(q1q3 + q0q2), r

′
2 = 2(q2q3 − q0q1), r

′
3 = 2

(

q2
0 + q2

3 −
1

2

)

(A15)  

where here and in the main text (⋅)′ = d(⋅)/ds and all symbols represent dimensionless quantities unless otherwise specified, α and β are dimensionless 
bending-to-torsional rigidity ratios of the cross-section, which are given by 

α = EI1

GJ
= (1 + ν)

2λ
and β = EI2

GJ
= (1 + ν)

2λ

(

h

t

)2

with

λ

(

h

t

)

=
[

1 − 192

π5

t

h

∑

∞

n=1

1

(2n − 1)5
tanh

(

π(2n − 1)
2

h

t

)

] (A16)  

A.2. Boundary conditions 

We consider the circular rings and give the boundary conditions for the twisting loads. The 1/4 model is considered here due to the anti-symmetry at 
quarter points (Yoshiaki et al., 1992). Let the reference length L be the radius of the circular ring, denoted as R, thus the natural curvature k1( u) is 1 and the 
arc length s is in [0, π/2]. The Euler angles are used to define the rotational boundary conditions (see Fig. A.1b-A.1c, Appendix A.3), which are then 
converted into those in terms of the quaternion components (q0, q1, q2, q3) using Eq. (A.24) (Appendix A.3). 

First, we consider the s = 0 boundary (BC-I of Fig. A.1c). For rotational degree-of-freedoms (DOFs), the rod end remains perpendicular to the initial d2 
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axis and is free to rotate around d2. Let γs be the unknown rotation angle, and then the Euler angles can be obtained as ψ = 0, θ = γs, ϕ = 0, which leads 
toq0 = cos

γs
2,q1 = 0,q2 = sin

γs
2,q3 = 0. The angle γs is not prescribed, implying M2 = 0. Therefore, we have 

q1(0) = 0, q3(0) = 0, k2(0) = 0 (A17) 
For translational DOFs, the rod end is free to translate on the initial d2 axis (same direction with E2 axis) with arbitrary r2 position, so we have 

r1(0) = 0, r3(0) = 0, F2(0) = 0 (A18) 
Second, we consider the s = π/2 boundary (BC-II of Fig. A.1c). Since the local basis has different orientations from the global basis, we recall that 

the components for position r are defined in the global basis, while those for M (or k) and F are in the local basis. For translational DOFs, the end is free 
to translate on the initial d2 axis (same direction with E3 axis) with arbitrary r3 position, so we have 
r1

(π

2

)

= 0, F2

(π

2

)

= 0, r2

(π

2

)

= 0 (A19) 

For the rotational DOFs, we obtain the Euler angles asψ = −1
2 π −γ, θ = 1

2 π,ϕ = 1
2 π, where γ is the prescribed twisting angle. Using Eq. (A.24) 

(Appendix A.3), we obtain 

q0

(π

2

)

=
̅̅̅

2
√

2
cos

γ

2
, q1

(π

2

)

=
̅̅̅

2
√

2
cos

γ

2
, q2

(π

2

)

= −
̅̅̅

2
√

2
sin

γ

2
, q3

(π

2

)

= −
̅̅̅

2
√

2
sin

γ

2
(A20) 

Eqs. (A.17)-(A.20) provide thirteen boundary conditions, which are sufficient for thirteen unknowns. There is one additional boundary condition 
q0(0)2 +q2(0)2 = 1 at the s = 0 boundary, which is implied already and does not need to be specified since (1) Eq. (A.15) 7-10 for qi implies that |q| is a 
constant, which must equal to 1 once the qi(π/2) that meet |q|=1 are specified; and (2) q1(0) = q2(0) = 0. As a result, the BVP system is well-posed for 
the single-segment ring folding problem. 

Once the system is solved, using the corresponding curvature component (i.e., k2) and the constitutive law Eq. (A.7), the external moment (denoted 
by M) that is required to prescribe the angle γ can be obtained as 
M = ML/GJ = M2L/GJ = βk2 (A21) 

Here, bars are included to represent dimensionless quantities. 

A.3. Relation between Euler angle and quaternion description of rotations 

Rotation of the local director basis (d1, d2, d3) is parameterized using the quaternion number, which is singularity-free. For any rotations in 3D space, 
there exists an axis a around which the rotation angle is ω. Then (q0, q1, q2, q3), called Euler parameters, can be introduced (Healey and Mehta, 2005): 
q0 = cos

(ω

2

)

, (q1, q2, q3) = asin
(ω

2

)

(A22) 

A unit quaternion q = (q0, q1, q2, q3) can then be defined, which satisfies |q| = q2
0 + q2

1 + q2
2 + q2

3 = 1. With such definition, a rotation matrix can be 
written in terms of quaternion components, as given in Eq. (10), which relates the rotated local basis (d1, d2, d3) and the global basis (E1, E2, E3) (see 
Fig. A.1b). Alternatively, using Euler angles (ψ , θ, ϕ) and following the 3–2-3 rotation convention(Love, 2013; Healey and Mehta, 2005; Yu and Hanna, 
2019) (see Fig. A.1b), i.e., the local basis rotates around d3 by ψ, then around rotated d2 by θ and finally around rotated d3 by ϕ, the relation between 
the local basis and global basis can be written as 
⎧

⎨

⎩

d1

d2

d3

⎫

⎬

⎭

=

⎛

⎝

cosϕ sinϕ 0

−sinϕ cosϕ 0

0 0 1

⎞

⎠

⎛

⎝

cosθ 1 −sinθ

1 1 0

sinθ 0 cosθ

⎞

⎠

⎛

⎝

cosψ sinψ 0

−sinψ cosψ 0

0 0 1

⎞

⎠

⎧

⎨

⎩

E1

E2

E3

⎫

⎬

⎭

(A23) 

Comparing Eqs. (A.10) and (A.23) leads to relations between quaternion components and Euler angles as follows, 

q0 = cos
θ

2
cos

ϕ + ψ

2
, q1 = sin

θ

2
sin

ϕ − ψ

2
, q2 = sin

θ

2
cos

ϕ − ψ

2
, q3 = cos

θ

2
sin

ϕ + ψ

2
(A24) 

Eq. (A.24) will help us to specify the boundary conditions for ring folding problem. 
To obtain the boundary conditions for the quaternion components (q0, q1, q2, q3), we first specify the rotational boundary conditions in terms of 

Euler angles using geometric conditions (Fig. A.1b) for certain loads, which are then substituted into to give the final forms. The boundary conditions 
for the twisting of differently shaped rings are schematically illustrated in Fig. A.1c. 

Appendix B. Folded shape and areal packing ratio by planar rod models 

We use a reduced planar rod model to evaluate the folded shapes of differently shaped rings, which are assumed to be three-looped, implying an angle 
change 6π over the entire ring. The curvature k1 is the sum of the natural curvature k1( u) and the curvature kd due to deformation. The geometric condition 
requires ∫ L0

0 k(u)1 ds = 2π and∫ L0
0 k1ds = 6π, which leads to∫ L0

0 kdds = 4π. Since the folded ring is in a planar configuration, it should have in-plane cur-
vatures only without producing any out-of-plane moments, i.e., M = (M1, 0, 0) in the frame (d1, d2, d3) with M1 = EI1kd and kd (≡k1 − k1( u)). In turn, the 
vanishing twisting moment M2 (Eq. (A.21)) at γ = π implies that the ring is folded into a planar (three-covered) shape. The M2(γ = π) = 0 is thus used as a 
criterion for determining the foldability. 

We consider the rings with two symmetric axes (excluding triangular rings). In this case, the internal force F = (0, 0, 0) can be assumed, which upon 
using Eqs. (6) and (7) implies constant M1 and kd along the ring. Therefore, kd can be written as 
kd = 4π/L0 (B1) 

The entire length L0 depends on the specific ring shape. With the k1 given in Eq. (B.1) and the in-plane condition, which, in our case, implies q0 = q1 
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= 0 and r1 = 0, the Eq. (14)7-13 reduces to 

q
′
2 = 1

2
q3k1, q

′
3 = −1

2
q2k1,

r
′
2 = 2q2q3, r

′
3 = 2q2

3 − 1 (B2) 
The constraint q2

2 +q2
3 = 1 is implied. The symmetry allows us to consider the 1/4 model. At the starting end (s = 0), the variables in Eq. (B.2) can be 

specified as 
q2(0) = 1, q3(0) = 0 

r2(0) = 0, r3(0) = 0 (B3) 
Eqs. (B.2) and (B.3) form an initial value problem (IVP). 
For elliptical rings, the ODE system should be re-parameterized with respect to τ following the method described in Section 2.1.2, such that k1 =

k1( u) + kd can be analytically expressed, where k1( u) is given in Eq. (21) and kd can be obtained using Eq. (B.1) as 

kd = 4π
∫ 2π

0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(bsinτ)2 + (acosτ)2

√

dτ

= π

aE
(

1 −
(

b
a

)2
) (B4)  

where E(p) denotes the complete elliptic integral of the second kind with 0 < p < 1. The re-formulated system can be solved using MATLAB through 
routine ode45 to give the folded ring shapes. The envelope area of the folded shape can then be calculated and used to evaluate the areal packing ratio. 

For rounded rectangular rings, the ODE system can be analytically solved. The 1/4 geometry consists of three segments that have distinct natural 
curvatures, which are given as 

k
(u)
1 = k

(u)
1 r =

⎧

⎨

⎩

0, 0 < s < c1

1, c1 < s < c1 + π/2

0, c1 + π/2 < s < c1 + c2 + π/2

(B5)  

where the fillet radius r has been used as the reference length L for normalization (see Eq. (13)), c1(≡a/r − 1), π/2 and c2(≡b/r − 1) are dimensionless 
segment lengths, a and b are the lengths of the semi-horizontal axis (E3-axis, see Fig. A.1c) and semi-vertical axis (E2-axis), respectively. By using Eq. 
(B.1) we can write the dimensionless curvature due to deformation as 
kd = π

c1 + 1
2
π + c2

(B6) 

Then, the curvature k1 ≡ k1( u) + kd for each segment is obtained. We observe that k1 is constant for each segment, thus Eq.1-2 implies 4q′ ′
2 +k2

2q2 = 0 
and admits the general solution q2 = cos

(k1x−Θ

2
) and q3 =−sin

(k1x−Θ

2
) where Θ is constant for each segment. Applying Eq.1-2 and continuous conditions 

of q2 and q3 at segment joints gives q2 and q3 as 
q2 = cos(φ(s) ) and q3 = −sin(φ(s) ), with

φ(x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1

2
kds, 0 < s < c1

1

2
(kd + 1)s − 1

2
c1, c1 < s < c1 + π/2

1

2
kds + π

4
, c1 + π/2 < s < c1 + c2 + π/2

(B7) 

Substituting q2 and q3 into Eq.3-4 and integrating from 0 to c1 + c2 + π/2 gives forms of r2 and r3 of the folded ring, 

r2 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1

kd

cos(kds) + 1

kd(kd + 1)

[

cos
(

kd

(

c1 +
π

2

)

+ π

2

)

− cos(kdc1)
]

, 0 < s < c1

1

kd + 1
cos(kds + s − c1) +

1

kd(kd + 1)
cos
(

kd

(

c1 +
π

2

)

+ π

2

)

, c1 < s < c1 + π/2

1

kd

cos
(

kds + π

2

)

, c1 + π/2 < s < c1 + c2 + π/2

r3 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

− 1

kd

sin(kds), 0 < s < c1

− 1

kd + 1
sin(kds + s − c1) −

1

kd(kd + 1)
sin(kdc1), c1 < s < c1 + π/2

− 1

kd

sin
(

kds + π

2

)

+ 1

kd(kd + 1)

[

sin
(

kd

(

c1 +
π

2

)

+ π

2

)

− sin(kdc1)
]

,

c1 + π/2 < s < c1 + c2 + π/2

(B8) 

Here, r2(s) has been subtracted by a constant such that r2(c1 + c2 + π/2) = 0 is consistent with the boundary conditions presented in Appendix A.2. The 
envelope area of the folded shape is calculated and used to evaluate the areal packing ratio. 
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Appendix C. More results on circular rings 

C.1. Further continuation on the h/t = 1 case 

Fig. C.1 shows the normalized twisting moment Ma/GJ versus angle γ curve, as well as the snapshots (from I to VIII) of deformed shapes at different γ 

values, for the circular ring with h/t = 1 obtained using rod theory. We see that when γ is allowed to exceed π, the continuation results in a complex 
equilibrium path, which can eventually arrive at the equilibrium solution for the folded three-covered shape at γ = π (see the state VIII). However, this 
solution is neither accessible nor stable under the simple twisting with γ varying from 0 to π. Therefore, the h/t = 1 case is identified as an un-foldable case 
and so do the similar cases throughout the paper. 

C.2. Strain energy-angle plots of representative cases  

Fig. C1. Folding of the circular ring with h/t = 1.0. The MR/GJ versus γ curve is obtained by numerical continuation on γ which can exceed π. Snapshots of deformed 
shapes at different γ values are provided. 

Fig. C2. Normalized strain energy UR/GJ versus γ curves for circular rings with different h/t values.  
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Appendix D. More comparisons between the rod model and FEA 

D.1. Elliptical rings  

Fig. D1. Elliptical ring folding through twisting. The Ma/GJ versus γ curves obtained using the rod model and FEA for fixed h/t = 4.0 and different b/a values and 
twisting axes: (a) x-axis, (b) y-axis. In (b), snap-back instability appears for b/a = 0.85. Hysteresis in FEA loading–unloading curves verifies such behavior. The initial 
(γ = 0, light gray) and final (γ = π, colored) configurations for these cases are provided at the bottom. The twisting axes are indicated by the black dashed lines. 
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D.2. Rounded rectangular rings  

Fig. D2. Folding of rounded rectangular rings through twisting. The Ma/GJ versus γ curves obtained using the rod model and FEA for different cases. (a) r/a = 0.3, h/ 
t = 4.0 and different b/a values. (b) b/a = 1.0, h/t = 4.0 and different r/a values. The initial (γ = 0, light gray) and final (γ = π, colored) configurations for these cases 
are provided at the bottom. The black dashed lines indicate the twisting axes. The folded shape is sensitive to not only the profile b/a but also the fillet size r/a, 
although the original shape seems to be insensitive to r/a. 
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D.3. Rounded triangular rings  
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